
JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 1

An Actionable Framework for Understanding and
Improving Developer Experience

Michaela Greiler, Margaret-Anne Storey, and Abi Noda

Abstract—Developer experience is essential for software companies, especially as teams shift to remote and hybrid work models.
Enhanced developer experience improves productivity, satisfaction, engagement and leads developers to stay longer with their
company. We set out to understand what affects developer experience through semi-structured interviews with developers from the
industry, which we transcribed and iteratively coded. Our findings elucidate factors that affect developer experience and characteristics
that influence their respective importance to individual developers. We also identify strategies employed by individuals and teams to
improve developer experience and the barriers that stand in their way. Lastly, we describe the coping mechanisms of developers when
developer experience cannot be sufficiently improved. Our findings result in an actionable, conceptual framework for understanding
and improving developer experience. The framework provides a go-to reference for organizations that want to enable more productive
and effective work environments for their developers.

Index Terms—developer experience, grounded theory, development practices, satisfaction, productivity.

F

1 INTRODUCTION

Improving developer experience is a goal for many compa-
nies as it results in higher levels of productivity [1], [2], [3],
[4] and improves worker retention [5]. How developers feel,
think and value their work are the fundamental dimensions
of their experience, and these are shaped by many factors,
including their team culture, working environment and
work activities.

Previous research has focused on understanding and
eliciting factors that help describe or predict developer
experience [1], [2], [3], [4], [6], but which factors may impact
a specific developer’s experience depends on their personal,
team, organization and project context [3]. For example,
technical debt may be a predictor of poor experience in
general, but for a specific developer that expects to work
with legacy code, it may not frustrate them as it might
others. Furthermore, some factors may be easier to act on
than others. For example, poor directional clarity in a project
may be easier to act on than a codebase with poor health.

Building on previous work, we wanted to identify which
factors can impact developer experience as well as why
certain factors may be both important and actionable. We
focused our investigation on developer experience when
working as part of a team, as many of the factors that
can improve or negatively impact experience are team-
related factors that are actionable by not just the individual
developer (e.g., how they interact with the team) but also
involve strategies that can be followed by the team (e.g.,
improving feedback mechanisms).

• Michaela Greiler is with University of Zurich, Switzerland, and DX USA.
E-mail: greiler@ifi.uzh.ch

• Margaret-Anne Storey is with University of Victoria, Canada.
E-mail: mstorey@uvic.ca

• Abi Noda is with DX, USA.
E-mail: a@abinoda.com

Manuscript received August 2, 2021

We conducted interviews with a diverse set of software
developers across the software industry to identify new
emergent factors or confirm which of the existing factors
reported in the literature are perceived as important to them
(and why) and may be actionable at the team and individual
levels. Through our interviews, we also identified strategies
developers use to overcome the barriers they face and their
coping mechanisms when general improvement strategies
do not work. Our research has produced a conceptual but
actionable framework that:

• describes developer experience in terms of a trilogy
of mind theory (feelings, perceptions, and expecta-
tions),

• outlines factors that impact developer experience,
• elucidates the characteristics of factors that make

them important in terms of impacting one or more
dimensions of developer experience,

• identifies barriers that crosscut the factors and that
hinder developers to improve their developer expe-
rience, and

• documents strategies and coping mechanisms that
developers use to overcome these barriers and im-
prove one or more dimensions of their experience as
a developer on a team.

We anticipate that this framework will help both re-
searchers and practitioners focus on the factors, barriers and
strategies that can lead to positive changes in developer
experience.

The paper is organized as follows. In Section 2 (Back-
ground), we present our working definition of developer
experience and review previous research that identified
some of the many factors that can be used to describe or
predict developer experiences. We present our methodology
in Section 3, describing the interviews and how we ana-
lyzed our interview data. Our findings led to a conceptual
actionable framework that is introduced in Section 4. The



JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 2

framework is further described in Sections 5 and 6 as fol-
lows: the factors and why they are important are presented
in Section 5 (Understanding Developer Experience) and the
barriers, strategies and coping mechanisms that emerged are
presented in Section 6 (Improving Developer Experience).
We describe how the framework can be put to use by
practitioners and researchers in Section 7. Finally, we detail
the limitations of our research in Section 8 and conclude the
paper in Section 9.

2 BACKGROUND

Before we can understand and eventually improve devel-
oper experience, we need to define what we mean by this
term, and also review what we know already about the
factors that influence developer experience.

2.1 Defining Developer Experience
The definition we use for developer experience in this
research is:

“How developers think about, feel about, and value their work.”

Our definition is inspired by Fagerholm and Münch
in [6], where they define developer experience in terms of
the theory of the trilogy of mind [7] from social psychology.
The three main dimensions of the mind are cognition, emo-
tion and expectation (also referred to as conation). Consider-
ation of these three dimensions of experience is important as
“real-world problem solving operates in concert with moti-
vational and emotional processes, sometimes harmoniously
and sometimes discordantly.” [8].

The cognitive dimension concerns developers’ beliefs,
and how they think and evaluate their development in-
frastructure, processes, knowledge and skills. The affective
dimension of the mind describes developers’ emotions and
how they feel about their work. The conative dimension
of experience captures developer expectations, motivations
and how they see the value of their prior work behaviours
(their activities, productivity and contributions). Together
these dimensions interact and shape the intentions for future
work behaviour and actions.

Individual personality and other traits shape the three
dimensions of the mind, but the three dimensions are also
shaped by external and social forces, such as the nature
of the work, the work environment, and whether one is
working as part of a team or collective. Factors that influence
one dimension will typically also influence one or both
of the other two dimensions. The theory of the trilogy of
mind aligns with our view of the developer experience and
also helps us understand the important factors that shape
developer experience when working with others. Maylett
and Wride similarly define employee experience as the
experiences, perceptions and expectations of employees [9].
In the following section, we review the factors that have
emerged from related work on developer experience.

2.2 Factors That Impact Developer Experience
Previous research has aimed to identify factors that may
impact developer happiness, job satisfaction, developer pro-
ductivity, and motivation—these aspects all relate to one or
more dimensions of developer experience.

Graziotin et al. [10] investigated developer happiness
(an affective state) through a survey and found that the
top factors associated with unhappiness were in order of
impact: being stuck in problem solving, feeling time pres-
sure to complete their work, bad code quality and coding
practice, under-performing colleague(s), feeling inadequate
with their work, boring or repetitive tasks, unexplained
broken code, bad decision-making in their team, imposed
limitations due to infrastructure, and personal issues that
are not related to their work. They also found that feelings of
happiness correlate with perceived productivity [10]. They
found that happier developers tended to perceive higher
productivity and vice versa. Bellet et al. also report a strong
relationship between productivity and happiness [11].

Murphy-Hill et al. investigated which factors can predict
software development productivity through a study with
three companies [4]). They found that being enthusiastic for
one’s job was the top predictor for productivity, followed
by having supportive team members of their ideas, and
that they have autonomy over their tools and work [4]. A
literature review conducted by Wagner et al. details even
more factors that have been found to associate with reported
or perceived productivity.

Storey et al. researched developer satisfaction with their
work building on Wright and Cropanzano’s [12] definition
of job satisfaction as “an internal state that is expressed by
affectively and/or cognitively evaluating an experienced job
with some degree of favor or disfavor”. The satisfaction
factors Storey et al. identified through a large survey at Mi-
crosoft include: doing impactful work, being an important
contributor on their team, having a positive work and team
culture, feeling productive, receiving appreciation and re-
wards, and experiencing a positive work-life balance. They
also found a bidirectional relationship between satisfaction
and developer productivity, and that there are additional
factors that influence productivity: autonomy in one’s work,
ability to complete tasks, and the quality of the engineering
system.

Motivation for work aligns most closely with the cona-
tive dimension of developer experience. Beecham et al. stud-
ied developer motivation in a systematic literature review,
and identified many personal and work characteristics that
moderate the influence of a large number of motivating
factors (e.g., good managers, task fit, empowerment) and
demotivating factors (e.g., poor managers, poor working
environment, stress) [13]. Subsequent work by Sharp et
al. [14] reviewed several models found in the literature
and proposed a model of motivation in software engineer-
ing that includes motivators, outcomes, characteristics and
context. More recently, empirical studies by França and
colleagues [15] identified a variety of factors that affect mo-
tivation, such as career progression and autonomy. França
et al. point out that motivation and job satisfaction are not
the same thing, which aligns with the three-dimensional
view of experience proposed by Fagerholm and Münch [6],
with motivation more closely aligned with the conative
dimension, and satisfaction with the cognitive dimension.

Previous research has collectively identified hundreds
of factors, and many factors overlap, as developer satisfac-
tion, productivity and motivation are related aspects of the
trilogy of mind. Our research captures not just one or two



JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 3

constructs, such as happiness, satisfaction and productivity,
but helps to impact developer experience overall. Hereby,
our focus is to identify which of these factors may be the
most important, why they are important and which ones
are actionable.

In the next section, we further synthesize the factors from
the related work to build a curated list of factors we then
used in interviews to prompt developers as they shared with
us their insights about what influences their experiences.

3 METHODOLOGY

Our research methodology involved semi-structured inter-
views with a diverse set of developers in terms of role,
industry, projects and experience. In this section, we de-
scribe how we selected interview participants, the interview
questions we asked, and our approach for analyzing the
results.

3.1 Research Questions

Congruent with our qualitative research approach, our re-
search questions were emergent and refined as we gath-
ered and analyzed our data. Our initial guiding research
question was: what are the most important and actionable
factors that affect developer experience? As we conducted
our interviews, we not only uncovered factors that matter
to developers, but also the characteristics of factors which
determine their relative importance to developers. Addi-
tionally, respondents shared barriers impeding their ability
to improve their experience, strategies they and their teams
employed to successfully make improvements, and their
coping mechanisms when factors negatively impacting their
experience could not be improved. Our emergent research
questions were as follows:

• RQ1: What important factors affect developer expe-
rience?

• RQ2: What factor characteristics determine how im-
portant a factor is to a given developer?

• RQ3: What barriers impede developers and their
teams from improving factors that affect developer
experience?

• RQ4: What strategies do developers and their teams
employ to improve developer experience?

• RQ5: What coping mechanisms do developers resort
to when factors that negatively impact their experi-
ence are not improved?

3.2 Semi-Structured Interviews

Through semi-structured interviews with 21 software de-
velopers, we set out to explore what factors developers
perceive as affecting their developer experience and to
understand how they improve these factors on their teams.
Each interview took between 45 to 90 minutes. We used
Zoom to record each interview and transcription software
to transcribe each recording.

The interview questions were based on an interview
guide which can be found at https://github.com/get-dx/
dx-framework. In the first part of the interview, we provided

each participant with a high-level definition of developer ex-
perience: “developer experience is the developer’s percep-
tion of the work, processes, and culture that they encounter
while building software on a team”.1 We then asked them
which factors they perceived as affecting their experience.

In the second part of the interviews, we guided par-
ticipants through a discussion on factor importance and
actionability. To deepen the discussion, we showed partic-
ipants a list of factors that we curated from literature. These
factors served as a prompt to help deepen the discussion
and encourage participants to consider factors that were
not immediately top of mind. This list was assembled by
consolidating factors from the literature we presented in
Section 2, merging duplicate factors, and then reducing the
list to factors we considered actionable for developers and
their teams. We also grouped the factors into categories
to present to the participants in order to reduce cognitive
overload in the interviews. This list of categorized fac-
tors is available in our supplementary materials found at
https://github.com/get-dx/dx-framework.

In the third part of the interview, we focused on under-
standing whether and how participants could influence or
improve their developer experience. Based on the insights
and experiences shared by each participant, we adjusted
and refined our questions about importance and action-
ability to match the circumstances of the interviewee. This
allowed us to investigate uncovered areas and continuously
gather more perspectives on topics that previous partici-
pants introduced.

3.2.1 Interview Participants
To select participants for this study, we used convenience
sampling by reaching out to developers in our network
using email or other social and communication channels.
Our selection criteria was that participants had to have
more than six months of professional software development
experience and currently be employed as a developer or
development lead. Prior to each meeting, we asked par-
ticipants for their consent to be interviewed and asked
for their permission to record the session. We informed
participants that they could withdraw from the interview
at any time and that their responses would then be deleted.
Our consent form and interview instructions can be found
in our supplementary materials online.

16 of the 21 participants had more than six years of
professional software development experience. Five of those
had 20+ years of experience. Four of the participants had
between two and five years of experience. And one partici-
pant had six months experience as a professional developer.
Participants worked in a variety of industries (including the
medical sector, developer tooling, HR software, consulting).
Participants’ team sizes varied from 2 to 100 people, and
their company sizes varied between 5 and 20K+ people.
Table 1 shows a summary of the developers we interviewed.

3.2.2 Interview Process
We conducted two pilot studies before finalizing our inter-
view guide and conducting the final set of 21 interviews

1. Note this preliminary definition of developer experience was used
to initiate the discussion in the interviews, rather than a formal defini-
tion as we provide in Section 2 to frame our research.

https://github.com/get-dx/dx-framework
https://github.com/get-dx/dx-framework
https://github.com/get-dx/dx-framework


JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 4

No. Company
Size

Industry Team
Size

Current
Role

Experience

P1 ∼2300 Developer
Tools

7 Lead
Engineer

22 yrs

P2 ∼1500 Payroll &
Human
Resources
Software

8 Tech Lead 6.5 yrs

P3 ∼80 Medical
Sector

5 Tech Lead 14 yrs

P4 ∼1300 Software Team Lead
& Engineer

20 yrs

P5 ∼500+ Energy 10 Solution
Architect

7 yrs

P6 ∼300 Software 100 Senior
Software
Developer

20+ yrs

P7 ∼80 Health care 15 Fullstack
Developer

4 yrs

P8 ∼20K+ Commerce 50 Software
Developer

4 yrs

P9 ∼5 CRM
Software

3 CTO/Tech
Lead

15 yrs

P10 ∼1200 Software In-
dustry

8 Senior
Fullstack
Engineer

8 yrs

P11 ∼20 Consulting 20 Software
Developer 3

5 yrs

P12 ∼180 Video
Streaming

8 Engineering
Director

23 yrs

P13 ∼150 Education 35 Team Lead
& Engineer

4.5 yrs

P14 ∼180 Video
Streaming

8 Software
Developer

6 yrs

P15 ∼50 Legal Tech 5 Senior
Software
Engineer

6 yrs

P16 ∼20 Software 6 Software
Engineering
Intern

6 mths

P17 ∼125 Software
Consulting

8 Software
Developer

2.5 yrs

P18 ∼150 Education 2 Junior
Software
Engineer

4.5 yrs

P19 ∼80 Human
Resources &
Recruiting

10 Developer 9 yrs

P20 ∼20 Software
Communi-
cations

4 Staff
Engineer

16 yrs

P21 ∼8 Software 3 Staff
Fullstack
Engineer

23 yrs

TABLE 1
Details of Study Participants

(the pilot study data was not used in our analysis). The
pilot studies encouraged us to add a definition of experience
to the interview protocol, and to include a curated list of
factors as a prompt to encourage more discussion (which
was needed for some participants more than others). As we
describe in the following section, we iteratively coded the
data from the interviews and stopped conducting additional
interviews once we determined that our codes and insights
were fully saturated, meaning that no new insights or codes
emerged from the three latest interviews.

3.3 Coding Process and Developer Experience
To analyze interviews, we used an open coding approach
where we coded the interviews in an inductive (bottom-up)

way [16]. Interviews were conducted and coded by two or
more authors over several iterative cycles. Interview record-
ings and transcriptions were continually revisited until our
findings were saturated (that is, no new codes or insights
emerged). We divided the transcripts of the participants
into coherent units (sentences or paragraphs) and added
preliminary codes that represented the key characteristics
that each participant talked about. We later agreed on a
set of focused codes that captured the most frequent and
relevant factors of developer experience.

We then used axial coding as described by Charmaz to
group the codes into categories. This was done using visual
mapping tools in several iterative cycles with discussion
among the authors. As we were coding, we wrote memos
for the codes and categories, and noted relationships across
codes. Table 2 shows examples of the coding process for sev-
eral transcripts and the resulting codes, categories and core
categories (that aggregate categories in our code hierarchy).

Early in our analysis, we identified a number of emer-
gent core categories: developer experience (DX) factors,
importance characteristics of DX factors, barriers impeding
development teams from improving their experience, strate-
gies for improving experience, and coping mechanisms if
barriers could not be removed. These five core categories
are key components in the developer experience framework
that emerged from our analysis (as shown in Figure 1). The
framework is our main research outcome and it also helped
us refine our preliminary research questions (as presented
above in Section 3.1). The core categories and associated
subcategories and codes will be described in more detail
in the following sections.

4 THE DEVELOPER EXPERIENCE FRAMEWORK

The main outcome from our research is an “Actionable De-
veloper Experience Framework” (see Figure 1)2. The central
concept in our framework is Developer Experience which is
characterized by the trilogy of mind dimensions (expecta-
tions, perceptions and feelings). This central concept in our
framework is inspired by other research (as discussed in
Section 2). The other two parts of the framework (the left
and right sides) emerged from our research.

On the left side of our framework, we list the two core
categories that emerged from our research that relate to
understanding developer experience. These two categories
include the factors that emerged from the first part of our
interviews (the factors that developers shared were the most
important to them, without any prompts) and the character-
istics of these factors that determine factor importance to the
participants. We describe these core categories in Section 5.

On the right side of our framework, we show the three
core categories that emerged from our research that are con-
cerned with improving developer experience and include the
barriers to improving developer experience, the strategies
for improving developer experience, and the coping mecha-
nisms of developers when developer experience can not be
sufficiently improved. We discuss these core categories in
Section 6.

2. A larger version can be found online at: https://github.com/
get-dx/dx-framework/blob/main/Actionable-DX-Framework.jpg

https://github.com/get-dx/dx-framework/blob/main/Actionable-DX-Framework.jpg
https://github.com/get-dx/dx-framework/blob/main/Actionable-DX-Framework.jpg


JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 5

Transcript Unit: If you have to touch a certain piece of code every other week and the whole codebase around it is suboptimal and
flawed, then making changes to that code is always very difficult and a little dangerous. Or if it’s not tested well, or if you don’t
even understand the full scope, because there’s so many things that are attached, then making changes, even for new features to
that part of code is not a nice task, I’d say. (P3)
Preliminary Code:
Changes can be difficult in low-quality
codebase, high risk making changes

Focused Code:
Codebase health

Category:
Development and
Release

Core
Category:
DX Factor

Transcript Unit: ”the developer tools that people use [are affecting DX]. So, I work in the.net stack mostly, and the tooling is actually
great. But there is a tool called ReSharper, which is like an add-on that companies have to pay for, which makes you a lot more
productive. And other types of tools. So I think tooling and the development environment itself is another big piece of it.” (P22)
Preliminary Code:
Developer tools influence productivity

Focused Code:
Development environment

Category:
Development and
release

Core
Category:
DX Factor

Transcript Unit: The founders of the company, when we would go to them for that criticism, or what we need - they weren’t very
responsive for it. They didn’t care, or at least they didn’t show any sort of empathy about it or any understanding of our situation.
They just said keep working. And so, I think there was always effort to try to improve, but we started noticing the patterns and
gave up trying. We knew that at some point it doesn’t matter. We just need to do our job. And that was kind of the reason why we
would just complain to each other because there was no point to reach out anymore because we tried and it didn’t work. (P11)
Preliminary Code:
Developers stop speaking up when not
heard

Focused Code:
Stop speaking up

Category:
-

Core
Category:
Coping Mechanism

TABLE 2
Illustration of the coding process. More examples of the coding process can be found as part of our supplemental material.

5 UNDERSTANDING DEVELOPER EXPERIENCE

5.1 Factors Affecting Developer Experience (DX)

We aimed to identify what developers perceive as the most
important factors that affect their experience. As described
in Section 3, we iteratively coded their responses to the
question “what factors affect your experience” and grouped
them into categories. These categories represent themes that
helped us understand a set of factors as a group. Note
that the factors we share are factors that emerged from our
interviews before we prompted the participants to consider
other factors that we had listed from the literature. That is,
some discussed other factors as being important to them
but we do not include them here—although any that were
discussed were raised by other participants so they show
in the table. We discuss the consolidated list of factors, our
focused codes for this core category, and the categories we
grouped them into (through axial coding) in the following.

We note that the categories we assigned the factors are
biased on our own experiences and knowledge of software
development, and that other categories could also be used
for describing these important factors. We do not count
how many times each factor emerged as the interviews
were open ended, so any counting we would do could
be misleading. However, the factors that emerged were
all mentioned by two or more participants. We do pre-
serve a mapping of participants to factors in our raw data
that is available online for research transparency purposes.
Throughout the following, we also discuss how other re-
searchers have similarly identified these factors impacting
some aspects of developer experience.

5.1.1 Development and release
The development and release category consists of factors
relating to developers’ codebases, as well as the tools used
to write and release code.

One factor in this category, codebase health, refers to the
quality, maintainability, and ease of working in a codebase
and its impact on experience. As P6 shared: “Part of [what

affects my DX] is the codebase itself. This is a tough problem,
right? Working on a legacy code base. It was poorly architected
and just hard to understand. Tightly coupled. All the things that
make a codebase tough to work with and tough to change. That is
actually a major factor.”

The development environment was also a factor that
impacts their experience. P1 shared: “the very first thing that
came to my mind was around, the tooling or any friction around
the tooling that either makes it really painless to go from I’m
working on an idea to I’m testing that idea and production, the
tooling that makes it painful to go from point A to point B”. They
also added: “[what affects DX is] how quickly I can compile my
code, how fast continuous integration runs, how long it takes me
to be able to deploy my change to a lab environment or production
environment, how reliable my tests are [...] anything that extends
the feedback loop.” This factor also includes experience with
the engineering infrastructure such as the setup and config-
uration, as well as debugging and monitoring.

Another factor participants felt strongly about is whether
or not sufficient automated testing is in place. P12 stated:
“insufficient test coverage, for example, which makes it incredibly
hard to do any changes, and then also super complicated codebases
where things are really badly designed. So, really it’s about
confidence in that case. Everything that builds confidence, that
makes it easy to understand what’s going on and to be confident
that the change you’re doing is the right one. That is a big thing
for developer experience to me.”

Another development and release factor that emerged
was frictionless releases. Previous researchers have also
identified that the above factors relating to engineering
systems (code base, tools and processes) have an impact on
developer productivity and satisfaction [3], [4], [17].

5.1.2 Product management
An extremely important factor for DX is having clear goals,
scope and requirements. P4 described how extra effort is
needed to clarify with others that they are doing the right
tasks, and that a large task may need to be divided into
manageable tasks (what Schmidt and Bannon describe as



JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 6

Fig. 1. Actionable Developer Experience Framework.

articulation work [18]): “On the process side, [DX] also means
that clear goals really help me. If there’s lots of uncertainty around
the tasks, or if it’s like very large tasks that are ill-defined, then
it feels a bit like walking in a swamp. It’s very hard to make
progress. And just the clarification work you have to do to break
down tasks or to get more certainty for tasks, doesn’t feel like
actual work. For development teams, it doesn’t feel like it, because
you don’t submit a PR [instead] you talk to lots of people and
write a document and then you can basically create five tasks from
one. And that doesn’t feel like you achieved something because
you’re not deploying, you’re not writing code.” P4 also touched

on the factor of working iteratively, in small tasks, which
many participants described as affecting their DX.

(Unreasonable deadlines and having to make tradeoffs
in terms of timeline, roadmap and priorities was something
that many participants described as very stressful, nega-
tively impacting their experience. P13 stated: “The goals and
ambitions that the product team wants are - I understand them
and I see that these projects are important, but I think that the
timeframe that they want them in is not conducive to developing
good software and lasting software. There’s sort of a struggle.”
P13 also added: “I sort of have seen that high stress projects



JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 7

with tight deadlines can lead to definitely degraded experience,
and interpersonal interactions between engineers.” The impact
of poor timelines on developer happiness was also reported
by Fagerholm et al. [10]. In addition, participants talked
about how having a say on roadmap/priorities positively
increases their developer experience.

Many interview participants talked about how provid-
ing value to the business is very important to them. For
example, P11 said: “For me, what I find the most valuable in my
work is that I’m providing value to the business. So, if I’m able
to find a bug that may not be fun or interesting - as long as it
unblocks the business, I feel that I’ve done something rewarding
that day.” Previous researchers also reported that having
value and doing impactful work is important to developer
productivity and satisfaction [3], [4].

In contrast, many participants mentioned how unfore-
seen changes in the product direction leads to “thrown
away” effort. As P20 explained: “The absolute worst developer
experience is when I feel like I have a very clear goal and I get
done or almost done, and it’s like, oh no, we have to change it
completely because then you have to start from the beginning.”
And P7 talked about how agile processes lead to changing
requirements: “A lot of work that I do ends up being replaced
by some other work, like immediately. I mean, I see the results of
my work, but maybe 30% of it goes to nothing exactly because the
situation changed.”

5.1.3 Collaboration and culture
The collaboration and culture category gathers factors that
relate to the relationships people form and how those hinder
or help them complete their work.

One frequently mentioned factor was supportiveness,
where developers have constant support from their peers
and know they can quickly get friendly help whenever they
are stuck. As P17 explained: “I would say one of the biggest
ones is the amount of time that more experienced developers have
to spend with you. I noticed that on days where everyone’s busy
[...] and people don’t have time for me, my frustration level goes
up exponentially. Where I’m struggling with a problem for hours
that I know someone already has the answer to, but they don’t have
time to give me a little bit of guidance first [...] That’s probably the
single biggest factor to whether I have a good or bad day at work.”
The impact of supportive team members on team culture
and productivity has been reported in previous research, for
example, Schneider et al. present how positive comments
in meetings positively impacts team behaviour [19], while
“supporting of new ideas” was one of the top factors
for predicting productivity as reported by Murphy-Hill et
al. [4].

We found that junior engineers and engineers new to a
team need the support of their peers, but the more experi-
enced engineers also talked about how knowledge sharing
and feeling connected helps them. As P14 explained: “There
is this connectedness to the colleagues around you and it just helps
if you have a very direct and instantaneous communication with
your peers around you. Which really helps you build connections,
which also helps in how you support each other in a team. And I
think that’s very important for a developer because I am a full stack
developer, so we touch several systems with several programming
languages, and I cannot be aware of every single system. So in
some sense, I really rely on information from my colleagues. So

if I have this spontaneous connection to my colleagues around
me, it is much easier to get information and just understand and
communicate what needs to happen in certain systems.” Feeling
connected and the flow of information also emerged as
critical factors for team productivity in a recent study of
developers working from home during the pandemic [20].

An important developer-centric approach to building
connectedness and support for one another that came up as
a distinctive factor concerned the code review process. Par-
ticipants shared how code reviews create a better codebase,
but also help share knowledge and support and mentor each
other. But code reviews can also decrease DX. For example,
participants (P10, P16) talked about how ‘nitpicking’ or
being overly critical about their changes during code re-
views negatively impacted their developer experience. And
P1 talked about how the feedback tone in code reviews is
critical. The important role of code review in positive team
culture is also discussed by Bacchelli et al. [21].

But great collaboration is not only needed within the de-
velopment team. Almost all participants talked about how
collaboration between departments is important for posi-
tive developer experience. Developers specifically called out
collaborations with the product, design, or quality assurance
teams.

Psychological safety, feeling safe and willing to speak
one’s mind, is an important factor affecting developer ex-
perience. Several participants talked about how an open-
minded culture where junior or less experienced developers
are also heard is important to them and how leadership
plays an important role in ensuring psychological safety.
Lenberg et al. shared how psychological safety helps predict
higher self-assessed performance and job satisfaction [22],
However, their research shows clarity of norms is a stronger
predictor, which relates to our product management factor
of having clear goals and expectations.

Other important factors are communication between
developers and teams, which includes giving constructive
feedback, having aligned values, as well as getting recog-
nition for their work from their team and managers. These
factors also emerged in other research on developer satisfac-
tion, happiness and productivity [3], [4], [10].

5.1.4 Developer flow and fulfilment
Participants talked about factors that influence the degree
of ease and joy with which they can do their tasks, as
well as how they perceive their future at the company. We
grouped these factors into the category of developer flow
and fulfillment.

One frequently mentioned factor that influences devel-
oper flow is autonomy, as P3 described: “How much freedom
I have in making technical decisions versus somebody telling
me which approach to take for a certain problem.” But not
every developer wants full autonomy. Instead, quite a few
participants talked about how autonomy is needed for a
good DX, but it also has to be balanced with clarity. For
example, P5 explained: “Autonomy. That’s one of the things
that comes to my mind, but not let’s say unbounded autonomy.
But kind of, know your limits in a way. Know where you can
go towards and where you can’t. So you know, where it’s safe for
you to experiment and be creative about, and so on. [...] One of my
struggles today is not knowing where I cannot go to. Not knowing



JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 8

what’s off limits and that means that anything can be off limits. So
you kind of feel trapped in a way.” The importance of autonomy
on developer satisfaction, happiness and productivity has
emerged in other research as well [2], [3], [4].

Participants also described having the right level of
challenging work, where they are not overwhelmed by
the level of difficulty but also not bored. For example, P20
explained: “The other part of [DX] is the work that I’m doing in
and of itself. Like, there is kind of like those bands: [starting with]
‘this is just easy, busy work’ to there’s that middle ground of ‘I’m
learning something new, this is challenging, but I’m not in over
my head’, and then like kind of you’ve got that top level of ‘here
do this, and you have no idea what you’re doing’. So, like having
the correct, I guess, level of work.” What participants describe
is what Csikszentmihalyi [23], one of the co-founders of
positive psychology, describes as one of the ingredients to
get into a flow-like state: a balance between challenge and
skills. Flow is also seen as a key dimension for developer
productivity [24].

Another set of factors in this category that relate to
the joy and flow of work are making progress without
obstacles, having enough uninterrupted time, work-life
balance, and the degree to which they can learn on the job.
And finally, participants mentioned the stability of their job
and team and whether paths for career growth are clear as
influencing their developer experience.

5.2 Factor Importance

During the second part of our interviews, we asked par-
ticipants to describe why certain factors were important to
them. To guide this discussion, we showed them the list
of factors we derived from the literature to prompt them
to consider factors that were not immediately at the top of
their minds but might still be important to them.

Culture is the most important factor. One consistent
pattern we saw is that participants described work culture as
more important than other factors.

For example, P9 said: “I don’t think that a not perfect code
base is a reason for somebody to leave the company. Let’s put it
that way. Whereas if you have a toxic culture in your company,
that’s when people think of leaving a company and actually really
do it.” P12 expressed it in similar terms: “Culture is a very big
thing. I would even say that these are like baseline traits that you
have to have otherwise, everything else really does not matter.”

Participants also explained the high importance of cul-
tural factors by saying that a good work culture is crucial
to enable continuous improvement of their experience with
regards to all other factors. For example, if you have low
psychological safety within your team, developers do not
speak up about problems they experience with the quality
of the code bas, and are also reluctant to proactively improve
it. This in turn will lead to a further decay of the code.
On the other hand, if psychological safety and culture are
good, developers are more willing to tackle problems and
continuously improve the developer experience.

For the other factors that were shared through our inter-
views, participants described importance in terms of their
personal or project circumstances. In the following, we share
the key insights gathered through the interviews, which are
also illustrated in the framework, see Figure 1.

Presence of problems trumps other factors. One com-
mon theme that emerged is that developers perceive the
recent presence of problematic factors as significantly more im-
pactful than factors that are not impacting a positive expe-
rience. This effect is also known in research as the positive-
negative asymmetry effect or as the negativity bias [25]. In
a nutshell, it describes that negative events have a bigger
impact on a person’s experience (and memory) than positive
events (even of the same type).

Expectations shape importance. Participants also ex-
pressed that problems that are expected or perceived as normal
affect them less than problems where they envision their
experience could be better. For example, P10 said: “It’s like
so normal that the [Continuous Integration], like everything is
slow, that it is no longer something that is so much discussed.
Because, it also takes more time and we have a specific team that
is just doing that.”

Seniority influences importance. Another theme men-
tioned by quite a few participants is that seniority changes
how important or unimportant developers perceive certain
factors. Senior engineers are described as having more
mental capacity to think and care about a larger variety of
factors, such as release process or team culture, while junior
developers will mostly be focused on developer flow and
codebase health. As P2 described: “The weight of these cate-
gories changes drastically depending on how senior an engineer
is. So if you’re a junior developer, you might actually really only
care about codebase health and the developer workflow.” Senior
developers might also be expected to care more about and
be responsible for certain factors, which makes them more
important to them.

Personal interest influences importance. Participants
also described that personal interest can make factors more
or less important to them. For example, P2 stated: “People
can be so disconnected from some of these other areas of building
product that it’s almost like apathy. Like they don’t care about the
direction of the product. They just have a ticket that they need to
get done and that they’re not really questioning or thinking about
the product direction, or how the team as a whole can continuously
improve. They’re just trying to get their stuff done.”

Company goals make factors more or less important.
Which factors are perceived as important changes with the
goals of the company. For example, when a company wants
to release frequently, factors associated with deployment
frequency become more important to the developers be-
cause the expectations that they will work on and improve
those factors increases. Similarly, if a company cares about
code quality, code quality factors are more important to
developers.

Company maturity defines what is important. Devel-
opers also often described that the maturity of the company
impacts factor importance. The more mature a company or
team, the more developers expect certain industry standards
and comfort around their development environment, such
as continuous integration and deployment, or dedicated
teams that handle design or testing.

Frequent problems are more important. Finally, many
participants also saw a relationship between frequency and
importance. The common perception is that as problems
occur more frequently, their impact and therefore their
importance for developer experience increases.



JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 9

6 IMPROVING DEVELOPER EXPERIENCE

A primary goal of our study was to understand how devel-
opers and their teams (can) improve their developer experi-
ence. To investigate this, we asked developers about times
where their developer experience was less than ideal, and
probed about how they and their teams dealt with it. From
this data, we learned about the barriers that developers and
their teams face in improving developer experience along
with the individual and team strategies they employ in order
to make improvements. In addition, we also distilled coping
mechanisms developers used when areas of friction in their
developer experience were not improved. The presented
barriers, improvement strategies and coping mechanisms
are an essential part of our emergent DX framework, pre-
sented in this section.

6.1 Barriers to Improving DX
We asked developers what inhibited them and their teams
from improving developer experience. We discovered that
the barriers developers face are primarily organizational
rather than technical. The list of barriers are summarized
on the right-hand side of Fig. 1.

Low prioritization. One of the most prevalent barriers
developers face is getting improvements prioritized. Devel-
oper experience can’t be improved without committing time
and resources, and organizations often prioritize other ob-
jectives over developer experience. For example, developers
talked about how reducing technical debt was seen as a
lower priority than shipping features: “Although our product
manager is a really kind guy and he knows that technical depth
needs to improve, we sometimes fight hard to get a slot in our
sprint for just improving things [because of] pressure. Pressure
from the company, from investors, to our product manager, to
our product itself that we just bring the correct KPIs.” (P14)
Similarly, several developers talked about how running
tests slowed them down, but that improving testing and
testing infrastructure is not high on the priority list of their
company.

Inability to quantify problems. Many developers men-
tioned that a lack of measurements or data prevented them
from making a case for improvement. For example, P15
stated: “[Improving the test infrastructure] would become a
competing priority that they didn’t have much measurable data.
It’s easy for product to say we have these customers and we can
get this revenue, but it’s hard to say [invest in improving testing],
as there’s nothing that clearly illustrates that you’re losing 30
collective hours among 30 engineers a week trying to get your
testing set up?” And P10 explained: “As long as it’s not visible
in the KPIs, it’s not so important for the company. [...] It’s hard
to make a case for it.”

Lack of visibility/awareness. While measurements
would provide hard facts to make a case for improvements,
developers also struggle with a general lack of awareness
and visibility within their team and with external stakehold-
ers. Some developers shared that it was not always clear if
colleagues and peers experienced similar obstacles, as P13
explained: “I think that definitely parts of this [experience] are
shared. I’ve talked to coworkers. There are definitely some things
that they agree upon. I had a difficult time sort of gauging the
extent of how my workers feel about the current situation.” P13

added that colleagues might talk in private about problems
but when issues were brought up in meetings, nobody
spoke up publicly about them.

Lack of buy-in. Many developers often talked about
how missing buy-in prevented them from making improve-
ments. Visibility and measurements are important vehicles
to achieving buy-in from various stakeholders. Some de-
velopers also mentioned that management needs to trust
developers. P12 explained: “Good management obviously needs
to back [up] these decisions and then support people on that
[improving the codebase].”

Lack of ownership. Lack of ownership over areas that
cause friction can be a barrier. For example, P10 described
how they experienced major problems in their release
pipeline and that they had minimal capacity to improve
it because either another team was responsible for it or
they didn’t have permission to make a change. Furthermore,
ownership reduces other barriers as developers would not
need to convince others of the problem and they can de-
termine the priority of the problem themselves. Previous
research also showed that clear ownership increases the
willingness of employees to proactively improve their work
experiences [26].

Lack of improvement expectations. It is not only miss-
ing ownership that hinders developers from improving their
experience, others also expressed that they didn’t think
they were allowed to make those improvements. Lack of
expectations for improvement is also an issue at the team
level, as P1 told us: “My perception of normal is that a company
posts a job opening that says these are the requirements and the
expectations, and then you are expected to come join that team
and work the way that team works, as opposed to adding a new
person, and then talking about [what can be improved]. This just
feels out of the norm to me.” In general, “acceptance of the
status quo” was also described as a barrier for improvement
by the participants.

Lack of incentives. A lack of incentives and recognition
can hinder improvement efforts. For example, P14 talked
about the negative developer experience during code re-
views, which was linked to the lack of reward or recognition
P14 got for doing them. Also, P11 mentioned they put a lot
of effort into improving the test suite, but the efforts were
not seen as valuable as the company was expecting P11 to
be a backend java developer. P11 said they felt undervalued
and underappreciated and stopped doing additional work
that exceeded their job description.

Missing improvement process. Several participants ex-
plained that there was no process for improvement, as P6
stated: “In my last company, the process had a lot of friction and
there was nobody improving it. And I was trying to get things
done and talk about these things and nothing was happening. So
there was no process to improve anything.”

No viable solution. A quite different set of barriers
developers talked about has to do with the solution space.
Developers explained that they and their teams sometimes
struggled with unclear solutions to problems. For example,
P1 shared that even though their deployment pipeline was
cumbersome and causing major productivity losses, the
team lacked the skills and knowledge to fix it. This presents
an obstacle even in cases where teams prioritize an issue
and have the ownership or authority to work on a problem.



JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 10

Sometimes the large scope or complexity of a problem made
it hard to improve DX. Developers talked about how prob-
lems they experienced were complex organizational (non-
technical) problems that spanned multiple people, teams
and departments. Another problem described by developers
concerned getting different stakeholders to agree on one so-
lution or direction, as P13 shared: “It’s difficult to get everyone
to agree on one thing and probably almost never happens.”

Politics and hierarchies. Another barrier that hinders
improvement DX is politics and organizational hierarchies.
Some developers shared that being seen as a less experi-
enced developer can drastically reduce their chance to drive
change as others might dismiss the solutions or problems
of junior team members. Senior developers also reported
struggling with politics. For example, P5 talked about how
a management change completely undermined their auton-
omy and authority, and that power struggles and politics
hindered any improvement efforts.

When analyzing our interview data, we found that often
it isn’t a single barrier that hinders a team to improve.
For example, a lack of ownership over an area can lead to
developers not vocalizing the problem within their direct
teams because the problem does not feel actionable. This
in turn results in a lack of awareness for the organization
as a whole, inhibiting others to make improvements. For-
tunately, developers also shared with us the strategies they
use to mitigate these barriers. We present these strategies
next.

6.2 Improvement Strategies

During our interviews, we inquired about strategies devel-
opers and their teams use to improve developer experience.
Developers shared both individual strategies and team strate-
gies.

6.2.1 Individual Strategies
Individual strategies focused on how they change their per-
sonal behavior, environment or activities to drive change.

Job crafting. One common individual strategy involves
job crafting where developers actively work on customizing
or changing their responsibilities or tasks in reaction to a
negative developer experience. For example, a developer
might see that the test suite is not sufficient and will
start prioritizing writing automated tests and improving
the integration of tests into release and deployment. By
doing so, the developer might deviate from their original
job description, as P11 described: “I started finding ways to
improve our process, or our systems and have a guard rail. I felt
that brought value to the business because it would save us from
rolling back on releases and reducing any issues [...] I started
expanding to things that were getting out of scope.”

Taking risks. Quite a few developers talked about how
they took risks to improve developer experience, and some
mentioned how they would rather ask for “forgiveness”
than permission when they wanted to drive change. As P11
stated: “I know I had influence whenever it came to tools that
we could use to help us save time and protect us from new bugs.
But, it was really I asked forgiveness instead of permission, there
was always that kind of situation. Like no matter what, it would
never be a good idea to ask because they would just say no. So

you should just do it on the time that you do have, and then be
able to show them that like this could bring value, but that also
requires you to spend extra time doing that work, that may not be
rewarded.”

Speaking up. Another strategy every participant men-
tioned was speaking up. Participants talked about how
speaking up happened during one-on-one meetings, retro-
spectives, or when casually talking with colleagues. When
developers speak up, they either make problems visible or
they speak up about improvement solutions. For example,
P18 said: “I’m just kind of pushy. I started saying: ‘in the past, we
haven’t had X requirementsand it’s led to some rocky development
and frustration.’ And so I’m not even going to start this ticket
until I have these things that I need.”

And P7 shared: “In the two retros before [...] everybody was
supposed to put their smiley that shows their mood [...] I put it on
a three and I put a really angry gorilla face and everybody else did
something super casual, like six, seven, happy, smiling, neutral,
smiley. But I went really hard and I made a point.”

Local improvements. Sometimes developers concentrate
on their direct and local developer experience, and drive
local improvements rather than trying to solve or improve
the global experience. For example, P18 explained that
the collaboration process with their design teams was not
effective. They did not know how to improve the overall
processes, but they proactively made arrangements with the
designer they worked with: “Of course I would like to see more
global change. The entire company could have a smoother process,
but I’m a junior engineer, so I don’t have too much influence. But,
I’ve just taken it upon myself. And so has this designer that’s
currently working with. We’ve just taken it upon ourselves to
have a more collaborative relationship.”

Workarounds. A bit different than local improvements
are workarounds as a strategy to increase developer expe-
rience. For example, one developer explained how working
on three tickets at the same time helped them deal with slow
code review turnaround times and slow test runs: “It’s a very
slow test driven development. So, like running a test takes 20 to
40 seconds on the local machine. Then there is a very long review
cycle, which can take up to two weeks to merge a merge request.[...]
The way we deal with it is doing everything in parallel. So you
work on eight things at a time because you need to switch.”(P10)

Mimicking success. Another way to drive change de-
scribed by the participants was to mimic the success of
others. Here, developers explained that they looked to
others, often more senior members of the team or people
that had been in the organization for a longer time, to
learn how to navigate and drive change. Observing and
mimicking others helped them understand how they could
improve developer experience, but also identify where their
autonomy ended or when driving change became too risky.

Pragmatic views Having pragmatic views/solutions in
mind helps improve experience. Many developers talked
about how their wish for a better developer experience
interplayed with the goals of the organization or business.
We heard about how they always balanced tradeoffs and
thought about developer experience and improvement op-
tions in a sensible and realistic way that created a symbiosis
between the developer and the business goals. Like P12
explained: “And it’s usually somewhere in between where you
end up to be in a good spot, but it’s really about having a certain



JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 11

degree of experience how much time you can spend, how you can
improve and, and what’s necessary and what isn’t. So sometimes
it’s really not so much about making it perfect, but getting it 70
to 80% there.”

6.2.2 Team Strategies
Team strategies focus on influencing and driving change
with the help of others within a team or organization.

Building bridges. Experienced participants talked about
how building bridges was essential for their success in
improving developer experience. For example, participants
described how they actively and deliberately built relation-
ships with teams like the product management team or
the quality assurance team in order to have “allies” that
closely understand the developer experience and the effects
different problems or factors have on them.

Creating transparency. Closely related to building
bridges strategy is ensuring transparency. Through trans-
parency, developers give teams like the product team, where
they need buy-in to drive changes, full visibility into the
team and their problems. This in turn helps them align
with and agree on actions and improvement efforts for the
development team. As P12 explained: “Everything we do and
everything that we define as impacting developer experience is
something that the product team also sees because all of these
things are not something that happened behind a wall [...] you
don’t end up in a situation where you have to defend something
because they don’t understand what’s going on or you don’t
have to push for something that is unrealistic because they don’t
understand the context, why it’s unrealistic. So it’s really about
having a shared understanding, being able to trust each other, that
when I say this is important, my product manager will say, well,
then let’s do it.”

Convincing others. When buy-in from the team or from
management is needed for improvement efforts, convincing
others of the seriousness of the problem, as well as the
solution approach, is an important strategy to successfully
drive change. Related to convincing people is also educating
others about how certain factors that impact developer
experience also impact product quality or development
productivity.

Making small, steady progress. Some problems that
lead to a reduced developer experience are complex or large
enough that teams or developers cannot solve them easily
or quickly. Developers talked about how those problems
were split up into smaller, more digestible units and worked
on incrementally by the team. Reducing technical debt is,
for example, one of those issues that many participants
described to be working on and improving continually.

Having metrics and measurements. A very impactful
and valuable strategy helping engineering teams to drive
improvement efforts is having metrics and measurements in
place that quantify the problem. Metrics and measurements
not only help with making problems visible, but they also
help with making progress and improvement efforts tangi-
ble. As such, metrics and measurements also help to reduce
the risk that improvement efforts, even if successful, are not
visible, and reduce wasted energies on efforts that lead to
no improvements. It also helps engineering teams evaluate
and learn from their efforts, and build upon their strategies
and solution approaches.

Having a driver. Some participants talked about how
having a driver was crucial for improvement efforts to be
successful. A driver, so they described, is a person that has
specific skills and strengths. Drivers are highly respected
within the team, and have the support of the team. In addi-
tion, drivers are well connected to others and can influence
and convince people whose buy-in is needed.

Involving experts. Finally, participants talked about
how involving experts was a strategy to drive improvement
efforts. For example, when the team lacks expertise or skills
in a certain area, they can bring in experts that help them
tackle a certain problem. P23 talked about how they lacked
knowledge around DevOps pipelines, but they brought in a
DevOps engineer to streamline the process from commit to
production.

6.3 Coping Mechanisms

During the interviews, participants talked about how they
cope with a bad DX they can not sufficiently improve. The
coping mechanisms we learned about range from focusing
on personal projects, to regaining joy and productivity in
their work, to actually leaving the job.

Focusing on personal projects. One coping mechanism
described to improve experience is to focus on personal
projects over assigned work. Through personal side projects,
such as open source work, developers can compensate for
missing gratification or a lack of collaboration in their paid
work. As P8 described: “During these past six months of where
it’s been very difficult to ship something and to feel stuck, working
on this smaller scale project [outside of work] with these coworkers
that I know well has been something that’s really helped me to
combat the imposter syndrome because, I can see that Hey, when I
work with people who I know, and they don’t mean, and we work
on smaller tasks and things that I’m familiar with, I’m able to be
productive and to ship code.”

Validating negative experiences. Another common cop-
ing mechanism concerns validating negative experiences.
Acknowledgment of problems by peers helps people deal
with bad developer experience, even if they cannot change
DX for the better—just knowing that others also see and
experience those problems is reassuring. As P17 shared: “A
lot of it is just affirmation that they hear you. So, when we go to a
meeting, we don’t necessarily agree with what’s happening. When
we talk about it afterwards, and it’s a lot of, like, I saw that too,
or I understand that. [...] It’s just more acknowledging that we’re
seeing the same thing and that we don’t agree with it, but there’s
not a whole lot that we can do about it.” And some developers
even talk about how they “bond over bad DX”.

Working overtime. A bad developer experience can
also force developers to work overtime to try to improve
their experience. For example, participants explained that
they worked in parallel, did improvement work outside of
normal work hours, procrastinated, or took breaks between
meetings which led to activities stretching out well beyond
the expected work day. As P13 shared: “I think that it
can definitely lead into that making those [improvement]
changes, and doing that work like outside of work hours
which I suppose is, like that in itself, isn’t great.”

No longer speaking up. A commonly described coping
mechanism is to stop speaking up about problems, which



JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 12

is the opposite of a strategy to improve their experience!
For example, P10 shared: “But it’s like so normal the CI, like
everything is slow that it is no longer something that is so much
discussed. Because, it also takes more time and we have a specific
team that is just doing that. [The team] is also just for basically
developer experience or like tooling.”

Reducing engagement. Several developers explained
how they stopped caring. In those cases, they still performed
their jobs, but only what was absolutely necessary. As P8
explained: “The quality and overall greatness of the software we
were building was declining, as we were scaling. And I started to
question what was happening? Why are we prioritizing certain
projects over improving quality [...] I started to lose trust in like
the roadmap and how things were decided to be worked on. And I
started being a little bit more vocal and outspoken about like: ’Hey,
we need to care about performance.’ [...] but at the end of the day,
my arguments were not winning. And, I got really cynical about
my experience at [company name] and I started going into work
and just being like, whatever, I’m not going to care about these
things anymore.”

Gaming the system. Another coping mechanism that
surfaced during the interviews concerned various ways of
gaming the system. For example, one participant explained
how he deliberately gave false time estimates that bloated
the effort by 100-200%. The reason for this was explained
as reduced motivation because working “hard” was not
more appreciated than working in reduced capacity, and to
save some time to compensate for improvement efforts that
had to be done “outside” of normal work hours. As P11
explained: “[A ticket would] probably take maybe one to three
days, but we knew that we don’t want to take any more work,
so we’ll extend it and make it the whole week and just say, ‘Oh
yeah, this is why [it took me that long.’ I’ve had some [air quotes]
Blockers [air quotes], but they weren’t really blockers. It was just
more like I’m trying to slow down because I also want to make
sure that management doesn’t know that I can do my job very
well, because then they’ll think that is the pace you always need
to be at. Or we’re going to question your value at this company.”

Leaving their job. Finally, almost every participant
brought up “leaving their job” as a last resort to deal
with bad developer experience that they felt they couldn’t
change, as P6 said: “In my last company, our process had
tons of friction all over the place and that led to unhappiness
with my job. So it led to, I mean, I left and that was not the
whole reason, but that was part of the reason was because
getting anything done was hard and it, and it didn’t seem
like there was. The company that was focused on improving
that.”

7 DISCUSSION

In this section, we detail the implications of our research
and propose how the actionable framework we develop for
understanding and improving developer experience can be
used by both researchers and practitioners.

7.1 Implications for Researchers

Developer productivity, motivation, happiness and satis-
faction, all aspects of developer experience, have been ac-
tive research topics for many years. This former research

identified many factors to guide understanding and the
prediction of developer experience. Still, which factors are
the most important to specific developers and how they
can be acted on to improve their experience has not been
studied extensively.

Our research culminates in a developer experience
framework with the core concepts of developer experience
factors, factor importance characteristics, the developer ex-
perience trilogy of mind, the barriers to improving experi-
ence, and the strategies and coping mechanisms developers
use to address those barriers to improve their experience
(see Fig. 1). We focused on highlighting actionable factors
that can pave the way towards identifying and designing
interventions to improve developer experience. The factors
we identified may influence all dimensions of the trilogy of
mind model (cognition, emotion and conation) that Fager-
holm et al. proposed in their work [6]. For example, the
development and release factors are closely related to the
cognitive dimension of developer experience (i.e., how de-
velopers perceive and think about development and release
tools), but they also influence developer emotions (e.g.,
frustration with certain tools) and developer expectations
(e.g., potentially less motivation to fix legacy code). We also
identified characteristics that make specific factors more or
less important to certain developers. An important finding
from our research, that corroborates previous research [3],
[4], is that factors related to culture and factors that describe
the developer’s work context matter the most.

Our framework may be put to “work” [27] by framing
theoretical propositions about how certain interventions
may be used to improve developer experience. Although
we report on strategies and coping mechanisms shared by
our participants, we cannot claim correlation or causal rela-
tionships across the constructs captured by our framework.
Our hope is that future work will expand our framework
and build theories of how to improve developer experience,
not just describe or predict it. For example, interventions
that researchers may wish to study include encouraging
and coaching developers to speak up more, to approach
their work in smaller increments, and to use the factors we
identify to reflect on their experiences. Future researchers
should also consider developing measurement models for
the factors we identified. For example, some factors may
help predict retention, while other factors may be more
relevant to predicting developer engagement or quality of
the delivered software.

7.2 Key Takeaways and Industry Relevance
From our research, we also distill some key takeaways for
practitioners in industry, and provide a three-step process
that helps put our framework into action.

Developer experience drives productivity, engagement
and job satisfaction. Our interviews showed that developer
experience not only affects a team’s ability to get work done,
it also affects developer engagement and the likelihood
of developers staying at their current jobs. This highlights
the importance for teams and organizations to proactively
manage and improve developer experience. Organization
leaders need to know about the consequences of bad DX
and help mitigate the barriers developers and development
teams face when trying to improve their DX.



JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 13

Developer experience is an organizational challenge,
not a technical one. We found through our interviews that
the barriers impeding a team’s ability to improve devel-
oper experience are primarily organizational. Development
teams are enabled to improve developer experience when
they are given ownership over an area and allowed the time
and resources to make improvements.

Factor importance varies, but culture is key. We dis-
covered that the importance of different factors to individ-
ual developers depends on their role, activities and goals.
However, cultural factors, such as psychological safety and
aligned values, are the one exception important to all devel-
opers we interviewed. Cultural factors enable teams to come
together to break through organizational challenges and re-
alize improvements. Related industry studies (DORA3 and
McKinsey [28], Google Aristotle4) have similarly identified
culture as a top driver of team and business performance.

Opportunities for improvement are abundant. All de-
velopers we interviewed shared at least one factor that
recently impacted their developer experience in a negative
way. This suggests that opportunities to improve developer
experience are widespread and can be surfaced if leaders
proactively ask team members to share and discuss any pain
points.

The framework can be put to work using an Ask-Plan-
Act process. We anticipate that our framework may be used
as a foundation for systematic approaches to assessing and
improving developer experience. To do so, we suggest the
following three-step process:

1) Ask: Developer experience is personal. As factor im-
portance is not universal, but rather dependent on
the individual role, activities and goals of each de-
veloper, it is crucial to ask each and every person
about their experience. Our factors and barriers can
be used as prompts for collecting feedback through
structured feedback mechanisms (e.g., surveys) or
unstructured methods (e.g., retrospectives, one-on-
one meetings). DX is important for productivity, re-
tention and happiness–companies don’t want disen-
gaged, unproductive and unhappy employees who
eventually leave.

2) Plan: Improvement needs to happen on an Individual,
Team and Organizational level. Once developer feed-
back has been collected, it can be analyzed to de-
termine the areas that need to be improved. To en-
sure that individuals and teams are empowered to
discover and deliver improvements, we recommend
assigning explicit owners for each improvement
area. Improvement efforts need to be planned for
and resources and time assigned. Teams need au-
tonomy, ownership, time and resources to improve
DX.

3) Act: Continuous, small improvements are key. To work
on experience improvement, developers and teams
may benefit from fast iterations and incremental
feedback loops. Our distilled strategies, such as

3. A summary of the DORA research can be found at: https://
services.google.com/fh/files/misc/dora research program.pdf

4. A summary of Google Aristotle can be found here: https://rework.
withgoogle.com/print/guides/5721312655835136/

building bridges, convincing others and creating trans-
parency, may help mitigate barriers to improve-
ment. Developers can use improvement strategies to
drive improvements themselves and should not rely
solely on their teams and leaders to drive change.
The factors can also be used to derive measures
for assessing the current DX and monitoring the
success of improvement efforts. This makes both
the problems and the improvements more visible
and actionable. Once action has been taken, the
process should repeat on a continuous basis by
always asking about developer experience and how
it may have improved or can be improved further.
Doing so will help reveal additional factors, barriers
and strategies that perhaps did not emerge from the
developers we interviewed.

8 THREATS TO CREDIBILITY

In contrast to quantitative studies, qualitative studies are
more prone to threats to credibility than threats to validity.
Validity and reliability in qualitative work mostly has to do
with how careful, thorough and honest the researchers have
been during data collection and analysis (Robson, 2002: 176).
Therefore, in the following, we mainly describe threats to
external and internal credibility of our study.

To increase our thoroughness and trustworthiness, we
developed an interview guideline and thoroughly coded
each transcript (which was automatically transcribed) itera-
tively. As transcripts were directly linked to the applicable
video recording of each participant, the researchers could
make sure that any errors introduced by automatic tran-
scription were corrected. During coding, the researcher also
frequently replayed a video to ensure a clear understanding
of what a segment of transcript was about and to increase
correct interpretation of the meaning, through not only
reading the transcript, but also by hearing (tone) and seeing
(body language) of the participants. This helped us ensure
that we understood the context and content of the statement
as much as possible.

Another threat to internal credibility for our study is
interpretive validity, which describes the threat that the re-
searchers imposed their own framework or meaning rather
than understanding the perspectives of the participants and
the meaning their words and explanations had (Maxwell,
1992). We mitigated this threat by paraphrasing many of
the key statements made during the interviews and asked
clarifying questions. In addition, while the main coding was
done by the first author of this study, the other two authors
were extensively involved with the axial coding process and
the establishment of the emerging factors, barriers, coping
mechanisms and categories. In addition, we also kept an
extensive audit trail in the form of recorded videos and
complete transcripts from all participants. All coding steps
were documented and available to all researchers. Parts of
this is also available as supplemental data.

With respect to external credibility, our sample size of
21 participants exceeds what Guest et al. recommends for
achieving saturation as our group of participants were a
relatively homogeneous group of active software develop-
ers. In addition, as reported, no new categories or concepts

https://services.google.com/fh/files/misc/dora_research_program.pdf
https://services.google.com/fh/files/misc/dora_research_program.pdf
https://rework.withgoogle.com/print/guides/5721312655835136/
https://rework.withgoogle.com/print/guides/5721312655835136/


JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 14

emerged during the last three interviews, which makes us
confident that saturation was reached.

During the interviews, we showed participants our cu-
rated list of factors to systematically steer a discussion
around importance and actionability. While this was helpful
to conquer recency bias and help participants consider more
factors, it also introduces the threat of confirmation bias and
respondent bias. For example, participants might confirm
factors in order to not offend the researcher. To conquer this
threat, we only considered factors that came up before the
curated factor list was shown in our analysis to distill the
DX factors. In addition, we asked participants during the
interviews to report what they experienced and to share
details of those experiences. In these cases, it was clear that
we analyzed data that represents a participant’s experience
and not what they thought the researcher might want to
hear.

9 CONCLUSION

In this paper, we presented a conceptual and actionable
framework that identifies the main factors that affect devel-
oper experience. Our research shows that a factor’s level of
importance strongly depends on characteristics that shape
the context in which developers experience those factors. In
addition, we identified barriers that prevent development
teams from improving their experience as well as strategies
developers employ to overcome those barriers. Finally, we
discussed coping mechanisms that developers use to deal
with bad developer experiences that cannot be directly im-
proved. By improving developer experience, organizations
can improve developer productivity and satisfaction, and
organizational performance. Developer experience is the
key to helping both developers and businesses thrive. Our
framework provides a go-to reference to help organiza-
tions understand what is important to create a productive,
effective and satisfying environment for developers, and
points to future research for understanding, measuring and
improving developer experience.

ACKNOWLEDGMENTS

We want to thank Alberto Bacchelli and Cassandra Petra-
chenko for their valuable input and guidance on our paper.
We also thank the interview participants for sharing with us
their perspectives and strategies for improving developer
experience, without them, this study would not have been
possible.

REFERENCES

[1] S. Wagner and M. Ruhe, “A Systematic Review of Productivity
Factors in Software Development,” arXiv:1801.06475 [cs], Jan.
2018, arXiv: 1801.06475. [Online]. Available: http://arxiv.org/
abs/1801.06475

[2] D. Graziotin, X. Wang, and P. Abrahamsson, “Are Happy De-
velopers More Productive?” in Product-Focused Software Process
Improvement, ser. Lecture Notes in Computer Science, J. Heidrich,
M. Oivo, A. Jedlitschka, and M. T. Baldassarre, Eds. Berlin,
Heidelberg: Springer, 2013, pp. 50–64.

[3] M.-A. Storey, T. Zimmermann, C. Bird, J. Czerwonka, B. Murphy,
and E. Kalliamvakou, “Towards a Theory of Software Developer
Job Satisfaction and Perceived Productivity,” IEEE Transactions on
Software Engineering, 2019. [Online]. Available: https://ieeexplore.
ieee.org/document/8851296/

[4] E. Murphy-Hill, C. Jaspan, C. Sadowski, D. Shepherd, M. Phillips,
C. Winter, A. Knight, E. Smith, and M. Jorde, “What Predicts
Software Developers’ Productivity?” IEEE Transactions on Software
Engineering, vol. 47, no. 3, pp. 582–594, Mar. 2019. [Online].
Available: https://ieeexplore.ieee.org/document/8643844/

[5] S. G. Westlund and J. C. Hannon, “Retaining talent: Assessing job
satisfaction facets most significantly related to software developer
turnover intentions,” Journal of Information Technology Management,
vol. 19, no. 4, pp. 1–15, 2008.

[6] F. Fagerholm and J. Munch, “Developer experience: Concept
and definition,” in 2012 International Conference on Software and
System Process (ICSSP). Zurich, Switzerland: IEEE, Jun. 2012, pp.
73–77. [Online]. Available: http://ieeexplore.ieee.org/document/
6225984/

[7] E. R. Hilgard, “The trilogy of mind: Cognition, affection, and
conation,” The history of the behavioral sciences, vol. 16, p. 11, 1980.

[8] G. Matthews and M. Zeidner, “Traits, states, and the trilogy of
mind: An adaptive perspective on intellectual functioning,” Moti-
vation, Emotion, and Cognition: Integrative Perspectives on Intellectual
Functioning and Development, pp. 143–174, Jan. 2004.

[9] T. Maylett and M. Wride, The Employee Experience: How to Attract,
Retain Top Performers, and Drive Results. Wiley, Jan. 2017.

[10] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “On
the unhappiness of software developers,” in Proceedings of the
21st international conference on evaluation and assessment in software
engineering, 2017, pp. 324–333.

[11] C. Bellet, J.-E. De Neve, and G. Ward, “Does Employee Happiness
Have an Impact on Productivity?” SSRN Electronic Journal, 2019.
[Online]. Available: https://www.ssrn.com/abstract=3470734

[12] T. A. Wright and R. Cropanzano, “Psychological well-being and
job satisfaction as predictors of job performance.” Journal of occu-
pational health psychology, vol. 5, no. 1, p. 84, 2000.

[13] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, “Mo-
tivation in software engineering: A systematic literature review,”
Information and software technology, vol. 50, no. 9-10, pp. 860–878,
2008.

[14] H. Sharp, N. Baddoo, S. Beecham, T. Hall, and H. Robinson,
“Models of motivation in software engineering,” Information and
software technology, vol. 51, no. 1, pp. 219–233, 2009.

[15] A. C. C. Franca, D. E. Carneiro, and F. Q. da Silva, “Towards
an explanatory theory of motivation in software engineering: A
qualitative case study of a small software company,” in Software
Engineering (SBES), 2012 26th Brazilian Symposium on. IEEE, 2012,
pp. 61–70.

[16] K. Charmaz, Constructing grounded theory: A practical guide through
qualitative analysis. Sage Publications, 2006.

[17] T. Besker, H. Ghanbari, A. Martini, and J. Bosch, “The
influence of Technical Debt on software developer morale,”
Journal of Systems and Software, vol. 167, p. 110586,
Sep. 2020. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0164121220300674

[18] K. Schmidt and L. Bannon, “Taking cscw seriously,” Computer
Supported Cooperative Work (CSCW), vol. 1, no. 1, pp. 7–40, 1992.

[19] K. Schneider, J. Klünder, F. Kortum, L. Handke, J. Straube, and
S. Kauffeld, “Positive affect through interactions in meetings: The
role of proactive and supportive statements,” Journal of Systems
and Software, vol. 143, pp. 59–70, 2018.

[20] C. Miller, P. Rodeghero, M.-A. Storey, D. Ford, and T. Zimmer-
mann, ““how was your weekend?” software development teams
working from home during covid-19,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 624–636.

[21] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges
of modern code review,” in 2013 35th International Conference on
Software Engineering (ICSE). IEEE, 2013, pp. 712–721.

[22] P. Lenberg and R. Feldt, “Psychological safety and norm clarity in
software engineering teams,” in Proceedings of the 11th international
workshop on cooperative and human aspects of software engineering,
2018, pp. 79–86.

[23] M. Csikszentmihalyi, S. Abuhamdeh, and J. Nakamura, “Flow,” in
Flow and the foundations of positive psychology. Springer, 2014, pp.
227–238.

[24] N. Forsgren, M.-A. Storey, C. Maddila, T. Zimmermann, B. Houck,
and J. Butler, “The space of developer productivity: There’s more
to it than you think.” Queue, vol. 19, no. 1, pp. 20–48, Feb. 2021.
[Online]. Available: https://doi.org/10.1145/3454122.3454124

http://arxiv.org/abs/1801.06475
http://arxiv.org/abs/1801.06475
https://ieeexplore.ieee.org/document/8851296/
https://ieeexplore.ieee.org/document/8851296/
https://ieeexplore.ieee.org/document/8643844/
http://ieeexplore.ieee.org/document/6225984/
http://ieeexplore.ieee.org/document/6225984/
https://www.ssrn.com/abstract=3470734
https://www.sciencedirect.com/science/article/pii/S0164121220300674
https://www.sciencedirect.com/science/article/pii/S0164121220300674
https://doi.org/10.1145/3454122.3454124


JOURNAL OF TRANSACTION ON SOFTWARE ENGINEERING, VOL. X, NO. X, OCTOBER 2021 15

[25] P. Rozin and E. B. Royzman, “Negativity bias, negativity dom-
inance, and contagion,” Personality and social psychology review,
vol. 5, no. 4, pp. 296–320, 2001.

[26] J. Liang, C. I. C. Farh, and J.-L. Farh, “Psychological antecedents
of promotive and prohibitive voice: A two-wave examination,”
Academy of Management Journal, vol. 55, p. 71–92, 2012. [Online].
Available: https://journals.aom.org/doi/10.5465/amj.2010.0176

[27] L. Varpio, E. Paradis, S. Uijtdehaage, and M. Young, “The dis-
tinctions between theory, theoretical framework, and conceptual
framework,” Academic Medicine, vol. 95, no. 7, pp. 989–994, 2020.

[28] S. Srivastava, K. Trehan, D. Wagle, and
J. Wang, “Developer Velocity: How software
excellence fuels business performance,” Apr. 2020.
[Online]. Available: https://www.mckinsey.com/industries/
technology-media-and-telecommunications/our-insights/
developer-velocity-how-software-excellence-fuels-business-performance

https://journals.aom.org/doi/10.5465/amj.2010.0176
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/developer-velocity-how-software-excellence-fuels-business-performance

	Introduction
	Background
	Defining Developer Experience
	Factors That Impact Developer Experience

	Methodology
	Research Questions
	Semi-Structured Interviews
	Interview Participants
	Interview Process

	Coding Process and Developer Experience

	The Developer Experience Framework
	Understanding Developer Experience
	Factors Affecting Developer Experience (DX)
	Development and release
	Product management
	Collaboration and culture
	Developer flow and fulfilment

	Factor Importance

	Improving Developer Experience
	Barriers to Improving DX
	Improvement Strategies
	Individual Strategies
	Team Strategies

	Coping Mechanisms

	Discussion
	Implications for Researchers
	Key Takeaways and Industry Relevance

	Threats to Credibility
	Conclusion
	References

