09/02/2021

Secure Code Reviews

Dr. Michaela Greiler

Increasing your Code Review Superpower

. More information at michaelagreiler.com
@mgreiler
X4 hi@michaelagreiler.com

Many companies invest in Code Reviews

NATIONAL "
"{INSTRUMENTS” -. Microsoft
‘. AUTOMATTIC

Go glemHB

15 vmware
=lutter GltHub Q’

michaelagreiler.com ¥ mgreiler

09/02/2021

I Motivations for Code Reviews @Microsoft

Code improvements

Find defects

Increase knowledge transfer
Find alternative solutions
Improve development process
Avoid breaking builds

Build team awareness

Lead to shared code ownership

Team assessment .

Microsoft

michaelagreiler.com

Code Reviews

Do Find Bugs

Sources:

3 mgreiler

Code reviews correlate with a
reduction of defects.

Unreviewed code is 2X more
likely to introduce defects than
reviewed code.

At Google, 80% of code reviews
lead to code improvements.

Fagan, Kemerer and Paulk, Tanaka et al., Bavota and Russo, Thongtanunam et al., Bacchelli and Sadowski.

michaelagreiler.com

9 mgreiler

09/02/2021

Not all code review feedback is equal!

Documentation -

UX, Design

Organization
Not useful

Solution Approach

Somewhat
useful

Resources

Validation

Useful
Logical

Defects
API calls, libraries
Synchronisation

0 5 10,

%6 of overall feedback 12 20 2!

Source: Characteristics of useful code reviews: an empirical study at Microsoft, Bosu, Greiler, Bird

Code Review Feedback

\NaAZ
9
’ | \

Best: OK: No-go:

Functional defects, Documentation, Alternatives without benefits,
missing corner cases or validation, coding style & conventions, existing tech debt and refactoring,
Api usage, best practices spelling mistakes planning and future work
michaelagreiler.com 89 mgreiler

09/02/2021

What to focus on during
code reviews

Is the Code Correct?

Does the code do what it's supposed to? Does it handle edge I n S pi r i n g

cases? Is it adequately tested to make sure that it stays correct
even when other engineers modify it? Is it performant enough
for this use case?

Is the Code Secure?

Does the code have vulnerabilities? Is the data stored safely? Is E I eg an 'l'
personal identification information (PIl) handled correctly?

Could the code be used to induce a DOS? Is input validation

comprehensive enough?

Is the Code Readable?
Is the code easy to read and comprehend? Does it make clear Rea d 0 b | e
what the business requirements are (code is written to be read
by a human, not by a computer)? Are tests concise enough? Are
variables, functions and classes named appropriately? Do the
domain models cleanly map the real world to reduce cognitive
load? Does it use consistent coding convention?

Is the Code Elegant? Sec U re

Does the code leverage well-known patterns? Does it achieve
what it needs to do without sacrificing simplicity and
conciseness? Would you be excited to work in this code? Would
you be proud of this code?

Is the Code Inspiring? C O r reC‘I’

Does the code leave the codebase better than what it was?
Does it inspire other engineers to improve their code as well? Is
it cleaning up unused code, improving documentation,
introducing better patterns through small-scale refactoring?

https://www.reddit.com/r/programming/comments/2wau2x/maslows _pyramid of code review/

Code Reviews Are Not 15% of the comments
Only About Bugs are about defects

https://www.reddit.com/r/programming/comments/2wau2x/maslows_pyramid_of_code_review/

09/02/2021

Readability Understandablity and readability, comments, nami

Organization of code EREGANEEIARE LT of methods, duplication
Solution approach

vValidation ck or improper
validation

BK

Visual representation [
identation

ﬁ ncerrect implementation and missing functionality

Control flow ar ogic issues

What are

Configuration support systems or libraries

code reviews Interface . ﬁ nteraction with other components
about?
Resources . ﬁ Resource initialization, manipulation, relzase
- akr
Timing l N Thread synchronisation, race conditions
5 10 15 20 25

Sources:
Bosu, Greiler, Bird: Characteristics of Useful Code Reviews: An Empirical Study at Microsoft 2015
Mantyld and Lassenius. What Types of Defects Are Really Discovered in Code Reviews? 2009

9
Figure 1: Survey relating detection methods to general vulnerability types
35 —
30 —
25 —
20 —
15 —
s— I I I I II
Vulnerabilities Privacy Business Logic Compliance Availability
(HIPPA)
Source Code Scanning Tools
I Automated Scan
I Manual Pen Test
Bl Manual Code Review Source: OWASP Code Review Guide 2.0
10

09/02/2021

....o..
® Readable, .. ¢

sMaintainable®] .
L °. Solutions 4

o. Code o’

: Improved ®

[.
e®e [L .
Y .. o .‘.. .. P

o
. ° * Accident :

* Knowledge §
o Sharing *
L]

Code Reviews .

are so much ..ooo.. Reviews Ending

. .
o prevention ®
L]

Code

mo r.e .. Menforing: Bugs o
a. B) ..o
L] *e [] [N
...... ..o .. ’.. ‘l..
° ® o Tracing ®
: Learning e : & °
. : e Tracking ..
° . ®Y .
e g0® ®go0®

michaelagreiler.com 3 mgreiler

11

michaelagreiler.com 9 mgreiler

12

Main Pain Points

Slow Turn-Around
Time

Low Review
Quality

09/02/2021

. O &

&
® large reviews low feedback
waitini "
¢ interruption quality

- —
o o

—_ L

~

) . . difficult review
time pressure
P performance
essure
: context switch pressur
low/no rewards a
bull
ulying conflicts

feeling attacked

michaelagreiler.com

3 mgreiler

13
The Code Review Quadrant
=
2 e®%%e
< ® o
o ®
g =< Value Reviews ® Power Reviews o
T thorough reviews ® thorough reviews g
> o impacting ® Jelivered ina ﬁme|y.
—x = deve|opmen'f speed @ manner)
g o . o
2 > ° °
T ~x ®eoo0
© [¢]
© o]
L 0
o Blocking Reviews Omissible Reviews
(Y
N L sloppy reviews sloppy reviews
H) .) . .
= impacting delivered in a timely
slow fast deve|opmenf speed manner
Process Speed 3
o
slow fast
Review Speed
michaelagreiler.com 9 mgreiler
14

09/02/2021

How do we make sure we
find important issues?

* OWASP Top 10 — Web app centric: https://owasp.org/www-
project-top-ten/
* Injection
» Broken Authentication
+ Sensitive Data Exposure
Kn oW * XML External Entities (XXE)
common » Broken Access Control

» Security Misconfiguration
secu r|ty « Cross-Site Scripting (XSS)
TN * Insecure Deserialization
\VAS | nera b | | |t| es * Using Components with Known Vulnerabilities
« Insufficient Logging & Monitoring

« Code review guide: https://owasp.org/www-pdf-
archive/OWASP_Code_Review_Guide v2.pdf

¢ Common Weaknesses by MITRE: http://cwe.mitre.org/data/
* 40 categories comprising 418 weaknesses
* Top 25 Most Dangerous Software Weaknesses

michaelagreiler.com 9 mgreiler

16

https://owasp.org/www-project-top-ten/
https://owasp.org/www-pdf-archive/OWASP_Code_Review_Guide_v2.pdf
http://cwe.mitre.org/data/

09/02/2021

35 —
30 —
25 —
20 —
15 —
10 —
5 —
0 —

Al A2 A3 A4 A5 A6 A7 AB A9

A10

I source Code Scanning Tool

I Automated Scan

Source: OWASP Code Review Guide 2.0

I anual Pen Test

I anual Code Review

17

michaelagreiler.com

Does this code change do what it is
supposed to do?

Can this solution be simplified?

Does this change add unwanted
compile-time or run-time dependencies?
Was a framework, AP, library, service
used that should not be used?

Was a framework, AP, library, service not
used that could improve the solution?

Is the code at the right abstraction level?
Is the code modular enough?

Would you have solved the problem in a
different way that is substantially better
in terms of the code’s maintainability,
readability, performance, security?

Does similar functionality already exist in
the codebase? If so, why isn't this
functionality reused?

Are there any best practices, design
patterns or language-specific patterns
that could substantially improve this
code?

Does this code follow Object-Oriented
Analysis and Design Principles, like the
Single Responsibility Principle, Open-
close Principle, Liskov Substitution
Principle, Interface Segregation,

Dependency Injection?

Logic Errors and Bugs

» Can you think of any use case in which

18

the code does not behave as intended

Dependencies

Security and Data Privacy

W mgreiler

If this change requires updates outside
of the code, like updating the
documentation, configuration, readme
files, was this done?

Might this change have any
ramifications for other parts of the
system, backward compatibility?

Does this code open the software for
security vulnerabilities?

Are authorization and authentication
handled in the right way?

Is sensitive data like user data, credit
card information securely handled ar
stored?

Is the right encryption used?

Use a Code
Review Checklist

Does this code change reveal so,
secret information like keys, pa
or usernames?

If code deals with user inp:
address security vulnerab
cross-site scripting, SQ
it do input sanitizatig
data retrieved frg
libraries checkg

ithub.com/megreiler/secure-code-review-checklist

https://github.com/mgreiler/secure-code-review-checklist

Security and Data Privacy

What security vulnerabilities is this code susceptible to?

Are authorization and authentication handled in the right way?

09/02/2021

Is (user) input validated, sanitized, and escaped to pre security attacks such as cross-site

scripting, SQL injectio

Is sensitive data like user data, credit card information securely handled and stored?

Does this code change reveal some secret information like keys, passwords, or usernames?

Is data retrieved from external APIs or libraries checked accordingly?

ption used?

19

23

michaelagreiler.com

Authentication

Authorization

=

Confidentiality

Web Security

b o

Data / Message Integrity

Principles

O

Availability
1. Accountability

B Non-repudiation

3 mgreiler

Confirm something is authentic. Example:
confirming the identity of a user.

Specify access rights to resources.
Example: only Joe can view Joe's account
balance.

Prevent the disclosure of information to
unauthorized individuals or systems.
Example: message encryption.

Data cannot be modified or corrupted
without detection.

Web sites need to be available and fast.
Example: many websites can boast 99.99%
uptime.

When a person or system accesses or
changes data their actions should be
traceable. Example: logging

The ability to prove that a transaction
took place. Example: electronic receipts.

10

32
Finding
vulnerabilities
is hard

33

1l-"f)rol:»al:uility of Finding Vulnerability with Varying Number of Reviewers

o o o
» o ©

Probability of Finding Vulnerability

o
N

0.0

09/02/2021

Experience

5 10 15 20 25 30
Number of Reviewers

Fig. 4. A graph showing the probability of finding all vulnerabilities depending on the number of

Source: An Empirical Study on the Effectiveness of Security Code Review, Edmundson et. al

11

09/02/2021

-o- Azure - Bing = Exchange -+ Office <+ Visual Studio

1 | 1 1
0 5 10 15 20
Reviewers’ Number of Prior Reviews in the File

michaelagreiler.com ¥ mgreiler

34

Understanding
the Context

12

Focus on
WHAT and
WHY, not
HOW!

36

Give Context
and Lead The
Review

37

A
LA

09/02/2021

What does this change accomplish?

Why was this change necessary?

Why did you come up with this solution?

Have you considered alternative solutions?

Why did you decide against them?

What is the entry point of your solution?

Which order of files makes most sense for the
reviewer?

Would a gif, video or screenshot help understand
the change?

Add comments to get a reviewer's attention

Add comments to ask for specific feedback

13

09/02/2021

| need more information

to understand the code
and give valuable

feedback.

For the change | worked on,
there is no need for a lengthy
review description. The context
and code are clear enough.

L~ NR
Perspective 6\ \

michaelagreiler.com ¥ mgreiler

38

Change Size

14

09/02/2021

Code Review Size — Feedback Quality

80
. Visual Studio
=
°E’ Office
£
8 Windows
60 2
(]
5
G
®
0 0 10 20 30
Number of Files in Change Set
michaelagreiler.com W9 mgreiler
40
Code Review Size — Feedback Quality
Defect Density vs. LOC
800
8]
]
= k
7 60015 200-400 LOC are the
2 b maximum a developer can
o -] .
= 400 fv—=n effectively process
= % o
W
& . o
E 200 .2._."_l
g 8 geg L] Source: Best Kept Secrete of Code Reviews a
o .- o . study of Cisco’s code review
O bmocnteut 0% o . .
0 200 400 800 8OO 1000
LOC under review
michaelagreiler.com ¥ mgreiler
a1

15

http://smartbear.com/resources/case-studies/cisco-systems-collaborator/

Large Pull Requests

| Am Devloper
@iamdevloper

10 lines of code = 10 issues.

500 lines of code = "looks fine."

Code reviews.

42

Review Time

09/02/2021

16

09/02/2021

Defect Density vs. Inspection Rate

150
— []
3
_|125
-
@
Emo Sevee—, - -
S ‘. .
=
: 75 L] -
i - L]
E 50 EE S .
L] .
° . - * . o
ﬁ 25 - - -.- - < :
o * . ‘. .« °® L] .
0 200 400 600 800 1000 1200 1400
Review Inspection Rate (LOC/hour)
michaelagreiler.com ¥ mgreiler

Automation
Let the tool point out issues so people don’t have to.
B *
45

17

09/02/2021

Linter and other tools should be
part of an automated loop

Integrating

Llﬂtlﬂg on the chain to reduce interruptions and
waiting times.

DEVOPs cycle

Linting can take time. Design tool

But make sure problems are
reported before merge.

46

Problems reported after
merge don’t get fixed

47

18

Automatic Scanning

Strength
« Can runs continuously with ClI

* Finds buffer overflows, SQL
Injection Flaws

 Helps pinpoint developers to
problematic files

Weaknesses

09/02/2021

* Isn’t good in finding
authentication, access control,
or cryptography problems

» Reports many false positives

« Can only scan code (i.e., config
can be problematic if not

present in code)

» Code must be compile/runnable

michaelagreiler.com W9 mgreiler
48
How to make sure we find important issues?
Include people with
V Use a code review G Learn about security [(— | the right
checklist issues an expertise/experienc
e on the review
‘ Set enough time oo ,Rev'ew smal, Learn, learn,
& aside for a review a$ Incremental & |
changes earn
michaelagreiler.com ¥ mgreiler
49

19

09/02/2021

Strategy Growt h

Sol utions BYE) Wems

> 8 Success
Sal es

Strategy
ne

r
Busi sslnl

code review

Focus of a secure code review

09/02/2021

Data & Input Validation

¢ All data from users needs to be considered untrusted.

* Best practices:
* Exact match validator
* ,Known good” approach (allowed list)
* “Known bad” approach (block list).

* Input data: not only user data but also HTTP headers, input fields, hidden fields, drop down lists,
and other web components

* Check: type, length, characters.

* Do contextual escaping, instead of replacment
» Always validate on the server side (again)

* Use parameterized queries

michaelagreiler.com W9 mgreiler

52

Improper input validation can lead to

 Cross-site scripting (XSS) (CWE-79) attack

* SQL injection (CWE-89).

» Carriage Return Line Feed (CRLF) Injection (CWE-93)
* Argument Injection (CWE-88)

« Command Injection (CWE-77)

* Learn more:
http://cwe.mitre.org/data/definitions/20.html

michaelagreiler.com ¥ mgreiler

53

21

http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/93.html
http://cwe.mitre.org/data/definitions/88.html
http://cwe.mitre.org/data/definitions/77.html

54

57

SQL Injection

$query = "SELECT * FROM users WHERE name = '{$name}"

Input: Michaela; DROP TABLE users;

Authentication

» Can admin accounts log-in via the web?

+ Are failure messages for invalid usernames or passwords leak information?

» Are invalid passwords logged (which can leak sensitive pwd & username combis)?
+ Are the pwd requirements (lengths/complexity) appropriated?

+ Are invalid login attempts correctly handled with lockouts, and rate limit?

» Does the "forgot pwd" routine leak information, is vulnerable to spamming, or is the pwd
send in plain fext via email?

» How and where are pwd and usernames stored, and are appropriate mechanisms such
as hashing, salts, encryption in place?

* More info: https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

09/02/2021

22

09/02/2021

Experience the problems

WARRIOR

58
app.post('/api/resetPassword’, (req, res){
email = req.body.email;
(Temail) {
Password reset res.status(400).send('Missing email in request body');
routine }
accountRepository.findUserByEmail(email, (user)
(user !=) {
passwordGenerator.generateTemporaryPassword((tempPassword) {
» Notice that the reset accountRepository.resetPassword(email, tempPassword, () {
password email is sent to
the emall_address messenger.sendPasswordResetEmail(email, tempPassword, res);
supplied in the request,
but not the one retrieved
from the database. res.status(204).send();
1
1s
}
res.status(2e4).send();
s
s
59

23

09/02/2021

Username or email address

Password

Give away
info for

exploitation

Forgot password

Need help? Contact our support at
admin@codestashbin.com

Hello Roger

We have generated a new temporary password for your admin

account at CodeStashBin.
Your new temporary password is Eg01XURB.

Sincerely
CodeStashBin IT Support

61

24

62

63

Learn: Language Agnostic and Specific
Security

Questions & Discussion Get Dr. Greiler’s

michaelagreiler.com

@ hi@michaelagreiler.com

Code Review Guide: https://owasp.org/www-pdf-
archive/ OWASP_Code_Review_Guide vZ2.pdf

Ruby on Rails: https://rails-sqli.org/
Rails Security Guide: https://guides.rubyonrails.org/security.html

Great resources:

Secure Coding Practices Checklist: https://owasp.org/www-pdf-
archive/OWASP SCP_Quick Reference Guide v2.pdf

Cheat Sheets:) o)
https://cheatsheetseries.owasp.org/cheatsheets/SQL Injection Prevention Cheat Sheet.html

Input Validation: https://owasp-top-10-proactive-controls-2018.readthedocs.io/en/latest/c5-
validate-all-inputs.html

Code Review E-Book
including Code Review Checklists

bit.ly/CRE-Book

@mgreiler

09/02/2021

25

https://owasp.org/www-pdf-archive/OWASP_Code_Review_Guide_v2.pdf
https://rails-sqli.org/
https://guides.rubyonrails.org/security.html
https://owasp.org/www-pdf-archive/OWASP_SCP_Quick_Reference_Guide_v2.pdf
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp-top-10-proactive-controls-2018.readthedocs.io/en/latest/c5-validate-all-inputs.html

