


Test Suite Comprehension
for modular and dynamic systems





Test Suite Comprehension
for modular and dynamic systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 22 april 2013 om 12.30
uur
door

Michaela Simona GREILER

Diplom-Ingenieur - Alpen-Adria University Klagenfurt
geboren te Klagenfurt, Austria.



Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. A. van Deursen

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. Arie van Deursen Technische Universiteit Delft, promotor
Prof. dr. Hausi Mueller University of Victoria, Canada
Prof. dr. Serge Demeyer University of Antwerp, Belgium
Prof. dr. Erik Meijer Technische Universiteit Delft
Prof. dr. Koen Bertels Technische Universiteit Delft
Prof. dr. Frances Brazier Technische Universiteit Delft
Dr. Hans-Gerhard Gross Technische Universiteit Delft

The work in this thesis has been carried out at the Delft University of Technology,
under the auspices of the research school IPA (Institute for Programming research
and Algorithmics). The research was financially supported by the Netherlands
Organization for Scientific Research (NWO)/Jacquard project 638.001.209, AR-
TOSC: Automated Runtime Testability of SOA Composites.

ISBN 978-90-8891-603-8
Copyright 2013 by M. Greiler

All rights reserved. No part of the material protected by this copyright notice may
be reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and retrieval
system, without the prior permission of the author.

Author email: michaela.greiler@gmail.com



Acknowledgements
“Let us be grateful to the people who make us happy; they are the charming garden-
ers who make our souls blossom.” (Marcel Proust)

I would like to express my deep gratitude to Arie van Deursen, my research
supervisor and promotor, for his professional guidance and valuable critiques
throughout my research. He helped me to develop skills needed to be successful in
highly competitive environments. I am proud that I have been one of his students.
Further, I want to thank Andy Zaidman for our fruitful collaboration. It was a
pleasure to work with him. Special thanks should be given to Margaret-Anne
Storey, who has not only been a mentor but also became a friend. I am grateful
for her guidance, advise and the wonderful time I had while visiting her research
lab. I would also like to extend my thanks to all my colleagues that contributed
to make this department a great work environment. I would like to thank Alie
Mesbah for sharing anecdotes of his PhD experience, Felienne Hermanns for help-
ing me with the Dutch propositions and, especially, Erik Meijer for his advice on
choosing my next professional adventure and his e↵ort to support me on my way.
I would also like to thank Gerd Gross for involving me in this research project,
and the committee for their valuable feedback.

This research would not have been possible without people that always raise
a smile on my face and make me happy. On that note, I would like to thank my
family and friends for their support during the last four years. A special thank you
goes to my dear friends Joolie, Jamie, Nadja and Geisa, who managed to make
the PhD experience a good one, even during though times. Further, I would like
to thank my friend Robert for his constant support and his never-ending belief in
me. He is my oasis of calm. I thank my mum for always having an open door and
an open ear. The times my mum or my sister Katja came to visit me made me
feel at home even in a foreign country. Finally, I thank my granny for watching
out for me – not only when passing by in an air plane.

Thank you all for your support and love.

Delft, April 2013 Michaela Greiler

i



Danksagung
“Lasst uns dankbar sein gegenüber Leuten, die uns glücklich machen. Sie sind die
liebenswerten Gärtner, die unsere Seele zum Blühen bringen.” (Marcel Proust)

Großen Dank möchte ich meinem Doktorvater Arie van Deursen für seine
professionelle Betreuung und seine wertvolle Kritik während meines Doktorats
aussprechen. Durch ihn lernte ich mich im Wettbewerb zu behaupten. Ich bin
stolz, dass ich eine seiner Studentinnen war und von ihm lernen durfte. Ich möchte
mich auch bei Andy Zaidman für unsere gute und erfolgreiche Zusammenarbeit
bedanken. Im Speziellen möchte ich mich bei Margaret-Anne Storey bedanken.
Sie war nicht nur ein Mentorin für mich sondern wurde auch zu einer Freundin. Ich
danke ihr für die Betreuung und die schöne Zeit, die ich in ihrem Forschungsteam
hatte. Ferner möchte ich auch all meinen Kollegen danken, die zu der tollen
Arbeitsumgebung in dieser Gruppe beigetragen haben. Im Speziellen möchte
ich Alie Mesbah, Felienne Hermans und Gerd Gross danken. Ein großer Dank
geht an Erik Meijer für seinen Rat bei der Wahl meines nächsten beruflichen
Abenteuers und seiner Hilfe bei der Realisierung. Ich danke auch dem Komitee
für das wertvolle Feedback.

Ohne die Unterstützung meiner Familie und meiner Freunde wäre diese Arbeit
wahrscheinlich nicht möglich gewesen. Sie sind die Menschen, die mich immer
zum Lachen gebracht haben und die Sonne in meinem Herzen scheinen ließen.
Ein großer Dank geht an meine lieben Freunde Joolie, Jamie, Nadja und Geisa.
Sie konnten mir auch in harten Zeiten den Tag versüßen. Der größte Dank geht an
meinen Freund Robert, der ständig für mich da war und immer an mich geglaubt
hat. Er ist mein Fels in der Brandung. Ich danke meiner Mama, dass sie immer
eine o↵ene Tür und ein o↵enes Ohr für mich hat. Wenn sie oder meine Schwester
Katja bei mir auf Besuch waren fühlte ich mich zu Hause – auch in einem noch so
fremden und fernen Land. Ich danke auch meiner Omi, da ich weiß, dass sie im
Gedanken immer bei mir ist und auf mich Acht gibt – nicht nur wenn ich gerade
in einem Flugzeug vorbeifliege.

Ich danke euch allen für eure Unterstützung und eure Liebe.

Delft, April 2013 Michaela Greiler

ii



Contents

Acknowledgements i

1 Introduction 1

1.1 Software Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Testing dynamic and modular Software Systems . . . . . . 2
1.1.2 Test Suite Comprehension . . . . . . . . . . . . . . . . . . . 2

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Origin of papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Test Confessions: A Study of Testing Practices for Plug-In Systems 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Plug-in Systems: Capabilities and Challenges . . . . . . . . . . . . 13

2.3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 The Eclipse Plug-In Architecture . . . . . . . . . . . . . . . 14
2.3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Participant Selection . . . . . . . . . . . . . . . . . . . . . . 16
2.3.5 Presentation of Our Findings . . . . . . . . . . . . . . . . . 17

2.4 Testing Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Open Versus Closed Development Setting . . . . . . . . . . 17
2.4.2 Test Responsibilities . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.4 Beyond Unit Testing . . . . . . . . . . . . . . . . . . . . . . 19

iii



iv CONTENTS

2.5 Plug-In Specific Integration Testing . . . . . . . . . . . . . . . . . . 20
2.5.1 The Role of PDE Tests . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Plug-In Characteristics . . . . . . . . . . . . . . . . . . . . 20
2.5.3 Testing Cross-Product Integration . . . . . . . . . . . . . . 21
2.5.4 Testing Platform and Dependency Versions . . . . . . . . . 22

2.6 Barriers for Adopting Plug-In Specific Integration Testing Practices 24

2.7 Compensation Strategies . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7.1 Self-Hosting of Projects . . . . . . . . . . . . . . . . . . . . 25
2.7.2 User Involvement . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.3 Developer Involvement . . . . . . . . . . . . . . . . . . . . . 26
2.7.4 Openness – A Prerequisite for Participation . . . . . . . . . 26

2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8.1 Improving Plug-In Testing . . . . . . . . . . . . . . . . . . . 28
2.8.2 Open Versus Closed Source . . . . . . . . . . . . . . . . . . 28

2.9 Credibility and Limitations . . . . . . . . . . . . . . . . . . . . . . 29
2.9.1 Credibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9.2 Beyond Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9.3 Beyond the People . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 What your Plug-in Test Suites Really Test: An Integration Perspective on
Test Suite Understanding 33

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Background: Modularization in Eclipse . . . . . . . . . . . . . . . . 35

3.3 Information Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Set-up Interviews . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Summary: Eclipse Testing Practices . . . . . . . . . . . . . 39
3.3.3 Test Suite Understanding Needs . . . . . . . . . . . . . . . 40

3.4 Models for Understanding Plug-in Test Suites . . . . . . . . . . . . 44
3.4.1 The Plug-in Modularization View . . . . . . . . . . . . . . . 45
3.4.2 Extension Initialization View . . . . . . . . . . . . . . . . . 46
3.4.3 Extension Usage View . . . . . . . . . . . . . . . . . . . . . 49
3.4.4 Service Usage View . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.5 The Test Suite Modularization View . . . . . . . . . . . . . 54

3.5 Implementation and Tool Architecture . . . . . . . . . . . . . . . . 55

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6.1 The Subject Systems . . . . . . . . . . . . . . . . . . . . . . 59
3.6.2 RQ1: Applicability and Information Needs . . . . . . . . . 60
3.6.3 RQ2: Scalability . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6.4 RQ3: Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 70



CONTENTS v

3.7 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . 71
3.7.1 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.7.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . 72
3.7.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . 73

3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Measuring Test Case Similarity to Support Test Suite Understanding 77

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Tracing and Trace Reduction . . . . . . . . . . . . . . . . . . . . . 79
4.2.1 Tracing Test Executions . . . . . . . . . . . . . . . . . . . . 79
4.2.2 Handling mocks and stubs . . . . . . . . . . . . . . . . . . . 79
4.2.3 Trace reduction . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Determining Similarity Measurements . . . . . . . . . . . . . . . . 81
4.3.1 Relevancy support based on occurrence . . . . . . . . . . . 81
4.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Set-Up for Case studies . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.2 Technique customization . . . . . . . . . . . . . . . . . . . . 82

4.5 Case Study I: JPacman . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.1 Obtaining the Conceptual Mapping . . . . . . . . . . . . . 83
4.5.2 RQ1: Comparison to Conceptual Mapping . . . . . . . . . . 84
4.5.3 RQ4: Performance Characteristics . . . . . . . . . . . . . . 87

4.6 Case Study II: Auction Sniper . . . . . . . . . . . . . . . . . . . . . 87
4.6.1 Obtaining an Initial Understanding . . . . . . . . . . . . . . 88
4.6.2 RQ2: Suitability of Measurements for Understanding Test

Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6.3 RQ3: Handling Mocking . . . . . . . . . . . . . . . . . . . . 90

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Automated Detection of Test Fixture Strategies and Smells 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Test Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Analysis of Fixture Usage . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.1 Fact Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.3 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Implementation and Tool Architecture . . . . . . . . . . . . . . . . 104



vi CONTENTS

5.5 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 104
5.5.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5.3 Interviews and Questionnaire . . . . . . . . . . . . . . . . . 105

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6.1 RQ1: What do the structure and organization of test fix-

ture look like in practice? . . . . . . . . . . . . . . . . . . . 106
5.6.2 RQ2: Do fixture related test smells occur in practice? . . . 107
5.6.3 RQ3: Do developers recognize these test smells as potential

problems? . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.6.4 RQ4: Does a fixture analysis technique help developers to

understand and adjust fixture management strategies? . . . 110

5.7 Discussion and Threats to Validity . . . . . . . . . . . . . . . . . . 111

5.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Strategies for Avoiding Text Fixture Smells During Software Evolution 115

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Test Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Analysis of Fixture Smell Evolution . . . . . . . . . . . . . . . . . 120
6.4.1 TestEvoHound . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4.2 Measurements to Answer the Research Questions . . . . . . 121

6.5 Investigation of Test Fixture Smell Evolution . . . . . . . . . . . . 122
6.5.1 Evolution of Test Fixtures . . . . . . . . . . . . . . . . . . . 122
6.5.2 Discovery of Test Fixture Smell Trends . . . . . . . . . . . 124
6.5.3 Dispersion of Test Fixture Smells . . . . . . . . . . . . . . . 124
6.5.4 Development of Test Fixture Smells . . . . . . . . . . . . . 127
6.5.5 Fluctuations in Test Fixture Smells . . . . . . . . . . . . . . 130
6.5.6 Test Fixture Smell Resolution . . . . . . . . . . . . . . . . . 133

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.6.1 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.6.2 Implications for Automated Test Fixture Smell Detection . 134
6.6.3 Strategies and Recommendations . . . . . . . . . . . . . . . 135
6.6.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . 135

6.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



CONTENTS vii

7 Conclusion 139

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Research Questions Revisited . . . . . . . . . . . . . . . . . . . . . 140

7.3 Open Issues and Future Work . . . . . . . . . . . . . . . . . . . . . 144

Bibliography 147

A Appendix: Grounded Theory Study 155

A.1 Resulting Collection of Codes . . . . . . . . . . . . . . . . . . . . . 155
A.1.1 Category 1. Practices . . . . . . . . . . . . . . . . . . . . . . 155
A.1.2 Category 2. Plug-in Specific Integration Testing . . . . . . . . . . 157
A.1.3 Category 3. Test Barriers . . . . . . . . . . . . . . . . . . . . . 158
A.1.4 Category 4. Compensation Strategies . . . . . . . . . . . . . . . 159

A.2 Key Quotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Index of Codes to Participants 182

Zusammenfassung 185

Samenvatting 187

Curriculum Vitae 189





Chapter1
Introduction

Test suite comprehension became more di�cult over the last decade as test suites
have grown substantially. Especially for modular and dynamic systems, where
the system functionality can change at runtime testing is aggravated. In addi-
tion to enabling dynamic reconfigurations, modular systems are conglomerates of
several sub-systems, with di↵erent owners. Those two characteristics aggravate
testing and test suite comprehension (e.g., understanding which configurations
and combinations of the system have been tested) and therefore such systems
require further investigation.

1.1 Software Testing
At its heart, software testing can be defined as the execution of code using com-
binations of input and state selected to reveal bugs (Binder, 1999). This quite
plain sounding activity constitutes an important part of the software development
process. It sheds light on the quality and reliability of the software product regard-
ing functional and non-functional properties, and directs improvement activities.
Manual testing of software systems can be a tedious and time consuming task.
Therefore, e↵orts have been made to automate the testing process by using or
creating another software system to control the execution of tests, including the
comparison of actual to predicted outcomes, the setting up of test preconditions,
and other test control and test reporting functions. Fully automated tests run
without human interaction, which allows frequent and continuous test execution
throughout the software process (i.e., continuous testing). Continuous testing
brings new advantages, as it can be seen as a “safety net” during refactoring and
maintenance activities, increasing the confidence in the proper functionality of
the system, or alerting in case new bugs have been introduced.

Already Beizer (1990) stated that “the act of designing tests is one of the most

1



2 INTRODUCTION 1.1

e↵ective bug preventers known”.
This mind set, manifested in the test-driven development movement, directed

our research interest towards human-written automated test activities. As testing
related activities may consume a large part of the e↵ort required during software
development, the goal of this dissertation is to support developers during these
testing activities. Therefore, we investigate the current testing practices, reveal
testing challenges and design and implement several tools supporting developers
to overcome some of these challenges.

1.1.1 Testing dynamic and modular Software Systems
Modular and dynamic software systems have been of interest during this disser-
tation, as they exhibit the ability to be changed and enhanced at runtime, by
changing, adding, or removing parts of the system. This ability to change at
runtime is of interest as it aggravates testing activities because the final state of
the system and its functionality may be unknown or uncertain during development
as the system can change after deployment.

In this dissertation, plug-in-based systems have been investigated as they are
one type of a modular and dynamic system. Plug-in-based systems rely on plug-
in components to extend a base system (Marquardt, 1999; Voelter, 2001; Shavor
et al., 2005). As argued by Marquardt (1999), the base system can be delivered
almost “nakedly”, while most user value is added by plug-ins that are developed
separately, which can extend the existing applications without need for change.
In more sophisticated plug-in architectures, plug-ins can build upon each other,
allowing new products to be assembled in many di↵erent ways. The ability to add
and remove plug-ins and alter the system at runtime raises concerns about the
compatibility of plug-ins (Pohl and Metzger, 2006; Rehmand et al., 2007; Weyuker,
1998). Incompatibility, be it because of combinations of plug-ins or versions, can
be hard to strive against, and may restrict the benefits plug-in systems o↵er.

In particular, integration testing, where the scope of testing is a complete
system or subsystem of software components (e.g., plug-ins), is crucial to detect
problems between components and to reveal compatibility issues. One problem of
integration testing is that testing every possible combination of plug-ins, versions,
operating systems and third party libraries is often sheerly impossible, and already
considering certain combinations can lead to a combinatorial explosion of possible
tests. The number of combinations that are possible to test, considering limited
time and resources, can be increased by increasing the degree of test automation in
contrast to performing manual testing. The main disadvantage of test automation
is the increase in source code, i.e., test code.

1.1.2 Test Suite Comprehension
Automated test suites of modular and dynamic software systems, such as plug-in
systems, can comprise a substantial amount of test code (Zaidman et al., 2011).



1.1 SOFTWARE TESTING 3

Figure 1.1: Screenshot of the Eclipse IDE showing the test code of the well-known
plug-in system Mylyn

Like production code, test code needs to be maintained and adjusted upon changes
to production code or requirements, which can become very costly (Greiler et al.,
2010; Meszaros, 2007; Van Rompaey et al., 2007). Figure 1.1 shows a screenshot
of the Eclipse IDE showing the code and test code of the well-known plug-in
system Mylyn,1 which contains tens of thousands of lines of code, comprised in
several dozens of plug-in projects.

In order to be able to adjust and maintain software test code, the maintainer
has to su�ciently understand the code. This process is known as software com-
prehension, or when applied to test code, test suite comprehension. Corbi (1989)
defines software comprehension as “the task of building mental models of an un-
derlying software system at various abstraction levels, ranging from models of the
code itself to ones of the underlying application domain, for software maintenance,
evolution, and re-engineering purposes”. And Binder (1999) states that“E↵ective
testing cannot be achieved without using abstraction to conquer the astronomical
complexity of typical software systems”.

1
http://www.eclipse.org/mylyn/



4 INTRODUCTION 1.2

The process of constructing mental models at various levels of abstraction
requires an investigation of the test artifacts, such as test code and test docu-
mentation, but also includes a study of the code and the documentation of the
software system under test. This process can be di�cult and tedious, and with
the increases in size and complexity of the test suites and the system under test,
also the process gets more challenging. For plug-in-based systems, investigating
static artifacts may not even be enough to understand the test suite, and which
plug-ins are tested by it, as only during runtime the concrete bindings between
plug-ins are made. This may require the developer to investigate the software
executions to reveal the concrete configuration of the system under test and of
the test environment.

The process of obtaining a mental model of a software system can be sup-
ported by tools that are based on software reverse engineering techniques, which
provide the user with a representation of the system under investigation (e.g., the
test system) at various levels of abstraction. The term reverse engineering refers
to the process of deciphering designs from finished products, and was originally
used to analyze hardware components (Chikofsky and Cross, 1990). Reverse en-
gineering is a process of examination, whereby it generally involves extracting
design artifacts and building or synthesizing abstractions of the system that are
less implementation-dependent. The objective of reverse engineering is often to
gain a su�cient understanding of the software system to support maintenance,
enhancement or replacement activities (Müller et al., 2000).

The two main topics of this dissertation are plug-in-based systems and test
suite comprehension. In particular, challenges during testing plug-in-based sys-
tems are revealed, and reverse engineering based techniques to support developers
during test suite comprehension are presented.

The following sections detail the overarching research questions (Section 1.2)
and outline the research methods in use (Section 1.3). Section 1.4 presents an
overview of the individual chapters of this dissertation. The individual chapters
correlate with the studies performed, and are kept in a way that allows to read
them independently at the reader’s wish, as outlined in Section 1.6.

1.2 Research Questions
As outlined in Section 1.1.1, testing modular systems in general (Pohl and Met-
zger, 2006; Rehmand et al., 2007; Weyuker, 1998), and plug-in-based products
in particular, is a daunting task. Especially integration testing is aggravated in
such dynamic and modular environments as the myriad of plug-in combinations,
versions, interactions, and configurations gives rise to a combinatorial explosion
of possibilities. Yet in practice, the systems assembled from plug-ins are widely
used, achieving levels of reliability that permit successful adoption. So, which test
techniques are used and which challenges must be actually faced by developers to
test plug-in-based systems?



1.3 RESEARCH METHODS 5

In this dissertation, we set out to increase our understanding of how systems
assembled from plug-ins are to be tested, which challenges developers face during
testing of plug-in systems and, in particular, during integration testing. One of
these challenges is the substantial amount of test code, which causes developers
to have di�culties understanding and maintaining these large test suites. There-
fore, we further investigate how developers can be supported during test suite
comprehension and maintenance tasks.

In particular, we investigate the following four research questions in this dis-
sertation:

[RQ1] What makes testing of modular and dynamic systems challenging?

[RQ2] What makes integration testing more di�cult than unit testing?

[RQ3] How can we support developers during understanding high level tests?

[RQ4] How can we support developers during test maintenance?

1.3 Research Methods
During the studies included in this thesis, we use a wide variety of research meth-
ods, such as grounded theory (Bryant and Charmaz, 2007; Corbin and Strauss,
1990), interviews (Gubrium et al., 2012), surveys (Fowler, 2002), case study re-
search (Yin, 2003) and software repository mining (Kagdi et al., 2007). Often,
we use a mixed method approach, combining several methods in one study to
triangulate the findings. We adopt such a mixed method approach as it provides
a better understanding of research problems than one approach alone (Creswell
and Vicki, 2006). The two main pillars of this research are involving practitioners
and open as well as closed source software systems.

We assume that empirical evaluations and the involvement of the industry
in software engineering research are crucial to address challenges faced by prac-
titioners and develop techniques and tools that have a chance to be useful and
applicable for real world problems. In our studies, we are of the opinion that only
by involving people, in particular knowledgeable practitioners, we are able to re-
veal testing practices and problems during plug-in testing experienced in practice
(Chapter 2), reveal challenges during test code comprehension (Chapter 3) and
develop tools and techniques that are useful for practitioners (Chapter 3 and 5).
Especially, grounded theory, a method originated from the social sciences, is ap-
propriate for our studies as it is suitable for explorative, human-centered research
areas.

Case study research mainly applied to open source software systems is the
second pillar of this research. To date, many business models and revenues of
large software companies and foundations rely on open source software devel-
opment. Some of the most successful and widely used software products, such



6 INTRODUCTION 1.4

RQ Research question Chapters

RQ1
What makes testing of modular and dynamic Chapter 2 and 3
systems challenging?

RQ2
What makes integration testing more di�cult Chapter 2 and 3
than unit testing?

RQ3
How can we support developers during Chapter 3 and 4
understanding high level tests?

RQ4
How can we support developers during test Chapter 5 and 6
maintenance?

Table 1.1: Mapping of research questions to chapters

as Eclipse IDE, Mozilla Firefox, Apache web server and many more, are solely
created through open source software development. The impact of open source
software on software engineering research is tremendous. Open source systems
allow us to evaluate our techniques and tools in realistic settings which also grant
reproducibility and openness for other researchers to verify and challenge the
findings. Case study research, often applied to open source systems, helps us to
evaluate the scalability, applicability and accuracy of our techniques and tools.
Within this research, we greatly benefit from the open source community, but we
also think, we can contribute back with our involvement, as we take the e↵ort to
identify challenges in practices, develop techniques to address those and present
our findings at several industry conferences. Furthermore, our tools are publicly
available for download.2

1.4 Research Overview
This section gives a short overview of the chapters of this dissertation. Each
research question presented in Section 1.2 is addressed by two chapters, as illus-
trated in Table 1.1.

In Chapter 2, we present a grounded theory study in which we interviewed
25 professional software engineers about their testing practices and challenges for
plug-in-based systems. In this study, we reveal that because testing plug-in-based
software is complex and challenging, many developers focus on unit testing and
rather circumvent higher level testing activities, such as integration or system

2At http://swerl.tudelft.nl/bin/view/MichaelaGreiler/Software,
the following tools are available: ETSE, ConnectionMiner, TestHound and TestEvoHound.



1.4 RESEARCH OVERVIEW 7

level testing. As discussed more elaborately in Chapter 2, developers indicate
that their main focus for test automation lies on unit testing. The degree of test
automation decreases for higher test levels, such as integration, GUI or system
testing. In this study, we also detail the barriers that hinder integration and
system test adoption, and finally show how limited testing is compensated by the
involvement of the community in the test activities.

In Chapter 3, we distill several information needs developers have during test
suite comprehension for plug-in systems from interviews. Based on these inform-
ation needs, we developed a static and dynamic analysis technique that provides
the developer with an abstraction of the system under test and its test suites, by
recovering five architectural views from the system which highlight the integration
points with other plug-ins and how this integration is tested. We implemented
this technique in a tool called the Eclipse Test Suite Exploration (ETSE) tool.
The evaluation is based on case study research, involving three well-known open
source systems, to show the applicability, precision and scalability, as well as an
initial user study addressing the usefulness of the tool.

In Chapter 4, we present a dynamic analysis technique that supports de-
velopers to understand relationships between di↵erent types of test suites (i.e.,
high level tests and unit tests). This technique links tests together based on the
similarity of their execution traces, whereby several trace reduction techniques
and similarity metrics come into play. We implemented this technique in a frame-
work called the Test Similarity Correlator. We used case study research and
mined the test suites of two open source systems with our tool in order to evalu-
ate the applicability and scalability of our technique. Furthermore, we compared
the automatically derived similarity relations with the similarity understanding
of a human expert. In this study, we show that the automatic derived relations
reflect well the understanding of similarity of a human expert and are helpful
during software comprehension.

In Chapter 5, we present a static analysis technique that automatically de-
tects smells, i.e., inadequate solutions to recurring implementation and design
problems, in test code. In particular, we analyzed the code that initializes and
configures the system under test (i.e., the test fixture) in oder to detect smells
related to the test fixture (i.e., test fixture smells). This detection technique is im-
plemented in a tool called TestHound. We evaluated the applicability, scalability
and usefulness of this technique by applying it to three software systems, and by
presenting the detected smells to a group of 13 software developers. In this study,
we show that fixture-related smells exist in practice and that software developers
experience TestHound as helpful during understanding test fixture smells.

In Chapter 6, we further investigated fixture-related test smells, by studying
their evolution, in order to improve integration of tool support in the continuous
integration environment. Therefore, we studied the trends of test fixture smells
over time, by performing software repository mining on five well-known open
source systems. We implemented our technique to mine test fixture smells for
several revisions of software systems and to calculate smell trends in a tool called



8 INTRODUCTION 1.5

TestEvoHound. The findings of this analysis allow to reveal several strategies for
test smell avoidance, and show which software changes cause severe increases in
test fixture smells.

1.5 Related Work
Test Culture. A few surveys have been conducted in order to reveal software
testing practices (Ng et al., 2004; Garousi and Varma, 2010). While these surveys
focus on reporting testing practices, we had the additional aim of understanding
why certain practices are used or are not used. In a survey, researchers can only
address previously defined hypotheses. Our grounded theory study in Chapter 2
on testing practices allowed first to emerge a theory about the testing practices,
and to let the structure and the content of the survey follow from the theory.

As an implication, while other surveys concentrate on pre-conceived barriers
to testing, such as costs, time and lack of expertise, we could address a much
wider range of factors of an organizational and technical nature, as expressed
by the participants themselves. Further, the grounded theory findings drove the
selection of test practices included in the survey. This allowed us to concentrate
on facts specially relevant for plug-in systems (reflected in a separate section of
the survey), and in turn to omit questions such as generation of test cases or
defect prevention techniques used in previous studies.

Testing component-based systems is known to be a daunting task (Pohl and
Metzger, 2006; Rehmand et al., 2007; Weyuker, 1998). Therefore, test practices
addressing specific test problems or characteristics for such systems have been
introduced. For example, Binder (1999) presents the popular framework test pat-
tern that focuses on validating the delta of a further developed framework, and
Mariani et al. (2007) investigate regression and compatibility testing for com-
ponent replacements. Research on configuration-aware software testing of highly-
configurable systems focuses often on the combinatorial problem, for example
by detecting valid and invalid combinations of configuration parameters (e.g., by
means of a greedy algorithm) (Cabral et al., 2010), or by using test prioritization
techniques for compatibility testing (Yoon et al., 2013). Especially, testing of
software product lines has been investigated during the last decade (Muccini and
Hoek, 2003), whereby Lee et al. (2012) report that many research e↵orts have
“focused on solving narrow research challenges”.

Our work, on the other hand, reveals broader testing practices and problems
during plug-in testing experienced in practice.

Test comprehension. A recent survey on the use of dynamic analysis for pro-
gram understanding purposes is provided by Cornelissen et al. (2009). One of
the findings of this survey is that very few studies exist addressing dynamically
reconfigurable systems – a gap that we try to bridge with our study presented in
Chapter 3.

Cornelissen et al. (2007) also worked on supporting the understanding of test



1.6 ORIGIN OF PAPERS 9

suites, and investigate the automated extraction of sequence diagrams from test
executions. Zaidman et al. (2008) investigate implicit connections between pro-
duction code and test code, by analyzing their co-evolution in version repositories.
Koochakzadeh and Garousi (2010) present a graph-based test coverage visualiz-
ation tool, whose usefulness is evaluated by Garousi and Varma (2010). The
tool allows developers to view the test coverage between two artifacts on di↵erent
scopes (i.e., test package, class and method). While these studies provide im-
portant starting points, none of them approaches test suite understanding from
an integration or extensibility point of view, nor do they address the plug-in
characteristics of systems under test.

Few researchers also worked on techniques to establish relations between test
cases to support test prioritization (Yoo et al., 2009), or test case selection (Ro-
thermel and Harrold, 1998; Hurdugaci and Zaidman, 2012). Galli et al. (2004b)
have developed a tool to order broken unit tests to steer and optimize the debug-
ging process. Our technique in Chapter 4 complements this work as we establish
links between test cases to assist developers in their (test suite) comprehension
and maintenance activities.

In the area of test suite analysis and understanding, van Deursen et al. (2002)
proposed a series of test smells (pointing to hard to understand test cases) as well
as a number of refactorings to remedy them. Later, this work was substantially
elaborated by Meszaros (2007) into an extensive book on xUnit patterns.

Few research focuses on automatic detection of test smells. Among them,
Van Rompaey et al. (2007) tried to detect the test smells General fixture and
Eager test by means of metrics. In a subsequent paper, they describe a tool
which uses well known software metrics to predict a broader variety of potential
problems and test smells (Breugelmans and Van Rompaey, 2008). Our studies, in
Chapters 5 and 6, di↵er in several aspects. First of all, we focus on test fixture
management and analysis of the test code for specific fixture problems relevant in
practice, and provide concrete refactoring suggestions. In contrast to our work,
Borg and Kropp (2011) describe automated refactoring for acceptance tests based
on the FIT framework. To the best of our knowledge, fixture-related test smells
and refactoring have not been studied in detail so far.

1.6 Origin of papers
This section elucidates the origin of the di↵erent chapters, as they are based on
peer-reviewed publications created for this dissertation.

Each chapter can be read in separation. The author of this dissertation is the
main author of all publications.

Chapter 2 appeared in the proceedings of the 2012 34th International Con-
ference on Software Engineering (ICSE 2012). This paper is referenced as
(Greiler et al., 2012a). The authors of this publication are Greiler, van
Deursen, and Storey.



10 INTRODUCTION 1.6

Chapter 3 is published in the Empirical Software Engineering journal, Novem-
ber 2012, and is an extended version of the paper “Understanding Plug-in
Test Suites from an Extensibility Perspective”, which appeared in the pro-
ceedings of the 2010 IEEE 17th Working Conference on Reverse Engineering
(WCRE 2010). This article is referenced as (Greiler and van Deursen, 2012).
The authors of this publication are Greiler and van Deursen.

Chapter 4 is published in the proceedings of the 2012 50th International
Conference on Objects, Models, Components, Patterns (TOOLS 2012).
This paper is referenced as (Greiler et al., 2012b). The authors of this
publication are Greiler, van Deursen, and Zaidman.

Chapter 5 appeared in the proceedings of the 2013 6th International Con-
ference on Software Testing, Verification and Validation (ICST 2013). This
article is referenced as (Greiler et al., 2013a). The authors of this publication
are Greiler, van Deursen, and Storey.

Chapter 6 will appear in the proceeding of the 2013 10th Working Confer-
ence on Mining Software Repositories (MSR 2013). This paper is referenced
as (Greiler et al., 2013b). The authors of this publication are Greiler, Zaid-
man, van Deursen and Storey.

Apart from these publications the author has been first author of the following
publications which have been created during the PhD trajectory but are not
directly included in this thesis:

“Evaluation of Online Testing for Services - A Case Study”, which appeared
in the proceedings of the 2010 2nd International Workshop on Principles of
Engineering Service Oriented Systems (PESOS 2010). The authors of this
publication are Greiler, Gross and van Deursen.

“Runtime Integration and Testing for Highly Dynamic Service Oriented
ICT Solutions”, which has been published in the proceedings of the 2009
4th Testing: Academic and Industrial Conference (TAIC PART 2009). The
authors of this publication are Greiler, Gross and Nasr.



Chapter2
Test Confessions: A Study of
Testing Practices for Plug-In
Systems

Abstract
Testing plug-in-based systems is challenging due to complex interactions among
many di↵erent plug-ins, and variations in version and configuration.1 The object-
ive of this paper is to increase our understanding of what testers and developers
think and do when it comes to testing plug-in-based systems. To that end, we
conduct a qualitative (grounded theory) study, in which we interview 25 senior
practitioners about how they test plug-in applications based on the Eclipse plug-in
architecture. The outcome is an overview of the testing practices currently used, a
set of identified barriers limiting test adoption, and an explanation of how limited
testing is compensated by self-hosting of projects and by involving the community.
These results are supported by a structured survey of more than 150 profession-
als. The study reveals that unit testing plays a key role, whereas plug-in specific
integration problems are identified and resolved by the community. Based on our
findings, we propose a series of recommendations and areas for future research.

1This chapter appeared in the proceedings of the 2012 34th International Conference on
Software Engineering (ICSE 2012). The authors of this publication are Greiler, van Deursen,
and Storey.

11



12 TEST CONFESSIONS: A STUDY OF TESTING PRACTICES FOR PLUG-IN
SYSTEMS 2.1

2.1 Introduction
Plug-in architectures permit the composition of a wide variety of tailored products
by combining, configuring, and extending a set of plug-ins (Chatley et al., 2004;
Marquardt, 1999). Many successful plug-in architectures are emerging, such as
Mozilla’s Add-on infrastructure2 used in the Firefox browser, Apache’s Maven
build manager,3 the WordPress extension mechanism,4 and the Eclipse5 plug-in
platform.

Testing component-based systems in general (Pohl and Metzger, 2006; Reh-
mand et al., 2007; Weyuker, 1998), and plug-in-based products in particular, is a
daunting task; the myriad of plug-in combinations, versions, interactions, and con-
figurations gives rise to a combinatorial explosion of possibilities. Yet in practice,
the systems assembled from plug-ins are widely used, achieving levels of reliabil-
ity that permit successful adoption. So which test techniques are used to ensure
plug-in-based products have adequate quality levels? How is the combinatorial
explosion tackled? Are plug-in specific integration testing techniques adopted?
For what reasons are these approaches used?

Answering questions like these calls for an in-depth study of test practices in
a community of people working on plug-in-based applications. In this paper, we
present such a study, revealing what Eclipse community practitioners think and
do when it comes to testing plug-in based systems.

Eclipse provides a plug-in-based architecture that is widely used to create a
variety of extensible products. It o↵ers the “Rich Client Platform” to build plug-
in-based applications and a series of well-known development environments (Shavor
et al., 2005). Eclipse is supported by a global community of thousands of com-
mercial, open and closed source software professionals. Besides that, the Eclipse
case is interesting as it benefits from a rich testing culture (Gamma and Beck,
2003; Greiler et al., 2010).

We set up our investigation as an explorative study. Thus, instead of starting
out with preset hypotheses on how testing is or should be done, we aimed to
discover how testing is actually performed, why testing is performed in a certain
way, and what test-related problems the community is facing. Therefore, we
used grounded theory (Adolph et al., 2011; Corbin and Strauss, 1990) to conduct
and analyze open interviews (lasting 1–2 hours) with 25 senior practitioners and
thought leaders from the Eclipse community regarding their test practices.

Our results show a strong focus on unit testing, while the plug-in specific test-
ing challenges and practices are tackled in an ad-hoc and manual manner. Based
on our results, we identified barriers which hinder integration testing practices for
plug-in systems. Furthermore, we analyzed how the lack of explicit testing beyond
the unit scope is compensated for, for example through self-hosting of projects

2
https://developer.mozilla.org/en-US/addons

3
http://maven.apache.org

4
http://wordpress.org/extend/plugins

5
http://www.eclipse.org



2.2 PLUG-IN SYSTEMS: CAPABILITIES AND CHALLENGES 13

and involvement of the community. We challenged our outcomes through a separ-
ate structured survey, in which 151 professionals expressed their (dis)agreement
with specific outcomes of our study. Furthermore, we used the findings to propose
a series of recommendations (at the technical as well as the organizational level)
to improve plug-in testing, community involvement, and the transfer of research
results in the area of integration testing.

The paper is structured as follows. In Section 2.2, we sketch the challenges
involved in plug-in testing. Then, in Section 2.3, we layout the experimental
design and the steps we conducted as part of our study. In Sections 2.4–2.7 we
present the key findings of our study, including the test practices used, the barriers
faced, and the compensation strategies adopted. In Sections 2.8–2.9, we reflect
on our findings, addressing implications as well as limitations of our research. We
conclude with a survey of related work (Section 2.10), and a summary of our key
findings (Section 2.11).

2.2 Plug-in Systems: Capabilities and Challenges
Plug-in-based systems rely on plug-in components to extend a base system (Mar-
quardt, 1999; Shavor et al., 2005; Voelter, 2001). As argued by Marquardt (1999),
a base system can be delivered almost “nakedly”, while most user value is added
by plug-ins that are developed separately, extending the existing applications
without the need for change. In more sophisticated plug-in architectures, plug-
ins can build upon each other, allowing new products to be assembled in many
di↵erent ways. In contrast to static libraries, plug-ins can be loaded at runtime.
Further, plug-ins make use of the inversion of control principle to allow custom-
ization of a larger software system.

This means that plug-in systems can be complex compositions, integrating
multiple plug-ins from di↵erent developers into one product, and raising concerns
about the compatibility of their components (Pohl and Metzger, 2006; Rehmand
et al., 2007; Weyuker, 1998). Incompatibility, be it because of combinations of
plug-ins or versions, can be hard to strive against, and may restrict the benefits
plug-in systems o↵er. For example, many users of the popular WordPress blog-
software su↵er from compatibility issues, and according to their own statement,
“The number one reason people give us for not upgrading to the latest version
of WordPress is fear that their plugins won’t be compatible.”6 There are many
resources on the Internet stating incompatible plug-in combinations.7 Still, in-
compatibility of plug-in combinations is an open issue.8

These same challenges also occur with Eclipse where combinations of plug-ins

6
http://wordpress.org/news/2009/10/plugin-compatibility-beta

7For example, plug-ins incompatible with Onswipe http://wordpress.org/

support/topic/plugin-onswipe-list-of-incompatible-plugins-so-far

8
http://www.wpmods.com/wordpress-plugin-compability-procedure



14 TEST CONFESSIONS: A STUDY OF TESTING PRACTICES FOR PLUG-IN
SYSTEMS 2.3

or versions can be incompatible.9 For example, while resolving a Mylyn issue and
tackling an integration problem with a specific Bugzilla version, a user states:
“Thanks, but I think we have given up on Eclipse and Bugzilla integration.”10

On project pages, phrases such as: “However we can not guarantee compatibility
with a particular plug-in combination as we do not test with all possible connector
combinations”11 commonly appear.

Such problems exist in many plug-in systems, which sparked our interest and
led us conduct a thorough investigation.

2.3 Experimental Design
Testing plug-in-based systems raises a number of challenges related to the inter-
actions between plug-ins, di↵erent configurations of the plug-ins, and di↵erent
versions of the plug-ins used. The overall goal of this paper is to increase our un-
derstanding of what testers and developers think and do when it comes to testing
plug-in-based systems.

2.3.1 The Eclipse Plug-In Architecture
As the subject of our study, we selected the Eclipse plug-in framework12 along
with its community of practitioners. We selected Eclipse for a number of reasons.

First, Eclipse provides a sophisticated plug-in mechanism based on OSGi13

and to that is enhanced with the Eclipse-specific extension mechanism. It is
used to build a large variety of di↵erent applications,14 ranging from widely used
collections of development environments, to dedicated products built using the
Rich Client Platform (RCP). Many of these plug-in-based products are large,
complex, and industrial strength.

Second, there is a large community of professionals involved in the develop-
ment of applications based on the Eclipse plug-in framework. As an example,
approximately 1,000 developers meet at the annual EclipseCon event alone.

Third, the Eclipse community has a positive attitude towards testing, as ex-
emplified by the presence of substantial test suites (see our analysis of the Mylyn
and eGit test suites (Greiler et al., 2010)) and books emphasizing the test-driven
development of plug-ins (Gamma and Beck, 2003). Moreover, Eclipse has expli-
cit support for the testing of plug-ins, through dedicated Plug-in Development
Environment (PDE) tests.

Finally, the Eclipse framework, as well as the many projects built upon it, are
open source. This makes it easy to inspect code or documentation, as well as to

9To mention only a few bugs on Bugzilla: 355759, 292783, 196164
10Bug Identifier: 268207
11
http://sourceforge.net/apps/mediawiki/qcmylyn

12
http://www.eclipse.org

13
http://www.osgi.org

14
http://en.wikipedia.org/wiki/List_of_Eclipse-based_software



2.3 EXPERIMENTAL DESIGN 15

share findings with other researchers. Since the Eclipse platform is also used for
closed source commercial development, it is possible to compare open and closed
source testing practices.

2.3.2 Research Questions
Our investigation of the testing culture for plug-in-based systems revolves around
four research questions. The first three we incorporated in the initial interview
guidelines. During our interviews, many professionals explained how they com-
pensate for limited testing, which helped to refine the interview guidelines and
led to the last research question.

RQ1: Which testing practices are prevalent in the testing of plug-in-based sys-
tems? Do these practices di↵er from non-plug-in-based systems?

RQ2: Does the plug-in architecture lead to specific test approaches? How are
plug-in specific integration challenges, such as versioning and configurations,
tested?

RQ3: What are the main challenges experienced when testing plug-in-based sys-
tems?

RQ4: Are there additional compensation strategies used to support the testing
of plug-ins?

2.3.3 Research Method
This section outlines the main steps of our experimental design. The full details
of our setup can be found in the corresponding technical report (Greiler et al.,
2011, Appendix A).

We started with a survey of existing approaches to plug-in testing. We studied
over 200 resources about the testing of plug-in systems in general, and the Eclipse
plug-in architecture in particular. Information was drawn both from developer
forums and the scientific literature. Most of the articles found were concerned
with technical problems, such as the set-up of the test environment. They did
not, however, provide an answer to our research questions.

Next, we conducted a series of interviews with Eclipse experts, each taking 1–2
hours. Interviews were in German or English, which we subsequently transcribed.
The questions were based on a guideline, which was refined after each interview.
We followed a grounded theory (GT) approach, an explorative research method
originating from the social sciences (Glaser and Strauss, 1967), but increasingly
popular in software engineering research (Adolph et al., 2011). GT is an inductive
approach, in which interviews are analyzed in order to derive a theory. It aims at
discovering new perspectives and insights, rather than confirming existing ones.



16 TEST CONFESSIONS: A STUDY OF TESTING PRACTICES FOR PLUG-IN
SYSTEMS 2.3

Table 2.1: Domains, projects, and companies involved in the interviews

Domain Project and/or Company

IDEs, Eclipse Distribution Yoxos, EclipseSource
SOA Mangrove, SOA, Inria
GUI Testing Tool GUIDancer, Bredex
Version Control Systems Mercurial, InlandSoftware
Modeling xtext, Itemis
Modeling IMP, University of Amsterdam
Persistence layer CDO
Domain Specific Language Spoofax, TU Delft
BPM Solutions GMF, BonitaSoft
GUI Testing Tool Q7, Xored
Coverage Analysis EclEmma
Modeling EMF, Itemis
BPM Solutions RCP product, AndrenaObjects
Scientific data acquisition OpenGDA, Kichacoders
Runtime platform RAP, EclipseSource
Task Management system Mylyn, Tasktop
Embedded Software MicroDoc
RCP product EclipseSource

As part of GT, each interview transcript was analyzed through a process of
coding : breaking up the interviews into smaller coherent units (sentences or para-
graphs), and adding codes (representing key characteristics) to these units. We
organized codes into concepts, which in turn were grouped into more abstract cat-
egories. To develop codes, we applied memoing : the process of writing down nar-
ratives explaining the ideas of the evolving theory. When interviewees progress-
ively provided answers similar to earlier ones, a state of saturation was reached,
and we adjusted the interview guidelines to elaborate other topics.

The final phase of our study aimed at evaluating our outcomes. To that end, we
presented our findings at EclipseCon,15 the annual Eclipse developer conference.
We presented our findings to a broad audience of approximately 100 practitioners
during a 40-minute extended talk, where we also actively requested and discussed
audience feedback.

Furthermore, we set up a survey to challenge our theory, which was completed
by 151 practitioners and EclipseCon participants. The survey followed the struc-
ture of the resulting theory: the full questionnaire is available in the technical
report (Greiler et al., 2011).

2.3.4 Participant Selection
For the interviews, we carefully selected knowledgeable professionals who could
provide relevant information on testing practices. We contacted them by parti-
cipating in Eclipse conferences and workshops, through blogging, and via Twit-

15
http://www.eclipsecon.org/2011/sessions/?page=sessions&id=2207



2.4 TESTING PRACTICES 17

ter. Eventually, this resulted in 25 participants from 18 di↵erent companies, each
working on a di↵erent project (identified as P1–P25 in this paper), whose detailed
characteristics are provided in (Greiler et al., 2011, Appendix A). All have sub-
stantial experience in developing and/or testing Eclipse plug-ins or RCP products.
12 participants are developers, 11 are project leads, 1 is a tester and 1 is a test
manager. The respective projects are summarized in Table 2.1.16

In the survey phase, we aimed to reach not only the experts, but the full
Eclipse community. To that end, we set up an online survey and announced it
via mailing lists, Twitter, and our EclipseCon presentation. This resulted in 151
participants filling in the questionnaire. The majority of the respondents were
developers (64%), followed by project leads or managers. Only 6% were testers
or test managers.

2.3.5 Presentation of Our Findings
In the subsequent sections, we present the results of our study, organized in one
section per research question. For each question, we provide relevant “quotes”
and codes, make general observations, and list outcomes of the evaluative survey.

In the Appendix A, we provide additional data supporting our analysis. In
particular, we provide the coding system we developed, comprising 4 top-level
categories, 12 subordinate concepts, and 1-10 basic codes per concept, giving a
total of 94 codes. For each code, we give the name as well as a short one-sentence
description. Furthermore, the technical report provides 15 pages of key quotes
illustrating the codes. Last but not least, we provide the full text of the survey,
as well as response counts and percentages.

2.4 Testing Practices
Our first research question seeks to understand which practices are used for testing
plug-in-based systems, and which software components (i.e., test scope) these
address.

2.4.1 Open Versus Closed Development Setting
Approximately half of the participant projects are open source, with the other
half being closed source projects (often for a single customer). The participant
companies that develop open source software typically also work on closed source
projects. The purpose of software development is purely commercial for all but
two projects. Open source projects count, for example, on selling functional
extensions for the open source product in supplementary products.

16Please note that for reasons of confidentiality not all companies and projects participating
at the interviews are listed.



18 TEST CONFESSIONS: A STUDY OF TESTING PRACTICES FOR PLUG-IN
SYSTEMS 2.4

Most of our participants are paid to develop open source software. A few
develop open source products in their free time, but profit personally from the
marketing e↵ect, e.g., for their own consultancy company.

In the survey, 21% of the respondents indicated that they develop pure open
source, 47% pure closed source, and 32% indicate that they work on both types
of projects.

2.4.2 Test Responsibilities

The interviews reveal that it is a common practice to have no dedicated test
team, but that testing is performed by the developers themselves (P1, P2, P4,
P5, P6, P7, P8, P9, P12, P13, P15, P16, P17, P18, P19). P5 explains: “Tester
and developer, that’s one person. From our view, it does not make sense to have
a dedicated test team, which has no idea about what the software does and can
only write some tests.”

Only a few projects report to have dedicated testers, either within the devel-
opment team or in a separate quality assurance team (P3, P10, P11, P14, P21).
P21 explains: “Automated tests are only developed by developers. Manual testing
is done partly [...] Regression testing is done by someone from the customer.”

Both practices are used in open and closed source projects. Respondents to
the survey indicate that closed source projects are more likely to have dedicated
teams (41%) than open source or hybrid projects (24%).

2.4.3 Unit Tests

Automated unit tests are very popular, probably because in the majority of the
projects, developers are responsible for testing. The teams of P1, P4, P7, P13,
P16, P20, and P22 use unit testing as the only automated form of testing; all
other forms are manual. P20 gives the strongest opinion: “We think that with a
high test coverage through unit tests, integration tests are not necessary.” And
P18 says: “At our company, testing is quite standard. We have di↵erent stages.
We have unit testing, and that’s where we put the main e↵ort – at least 70% of
the total expenses.” Also P15 reports: “The majority of the tests are written with
JUnit, and the main test suites comprise tests that do not depend on Eclipse.”

The majority of the participants share P14’s opinion: “Try to get to a level
that you write unit tests, always, whenever you can. [...] at max. you use one
integration or PDE test to probe the code. Ultimately, unit tests are our best
friends, and everything else is already di�cult.”

Participants are aware that unit testing is not always applicable. For projects
that rely solely on unit testing, this has visible implications. As P20 confirms:
“We try to encapsulate the logic as much as possible to be able to test with unit
tests. What cannot be encapsulated is not tested.”



2.4 TESTING PRACTICES 19

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Unit Testing Integration Testing GUI Testing System Testing
fully automated main effort test automation main effort manual only manual testing I don't know

Figure 2.1: Test automation for each test practice

2.4.4 Beyond Unit Testing
There are many other testing practices used, such as integration, GUI, and system
testing, but many participants do not describe them as their focus or key practice.

The second most applied techniques are manual and automated integration
testing (P3, P5, P6, P8, P10, P11, P12, P14, P15, P17, P18, P19, P21). The
PDE test framework is most commonly used for automating integration testing.
Participants indicate that they use integration tests for testing server-side lo-
gic, embedded systems, and third-party systems connected through the network.
Integration tests also include tests indirectly invoking plug-ins throughout the
ecosystem. In Section 2.5, we will see that PDE tests are often used in place of
unit tests.

Successful adoption and active use of automated GUI testing is limited to four
projects. Many participants see alternative solutions to the “expensive” (P15)
automated GUI testing approaches by keeping the GUI as small as possible and
by decoupling the logic behind a GUI from the GUI code as much as possible
(P13, P16, P17, P20, P23). As P13 puts it: “We try to make a point of surfacing
as little visible stu↵ in the UI as possible.” In summary, the degree of adoption,
and especially automation, decreases drastically for test practices with a broader
scope.

The survey, aimed at the broader Eclipse community, enquires about test e↵ort
and the level of automation used for unit, integration, GUI, and system testing.
The answers suggest a more or less balanced distribution of total e↵ort per test
form, but a decrease in automation level. Thus, as illustrated in Figure 2.1,
automation drops from 65% for unit, to 42% for integration, to 35% for GUI, and
to only 19% for system testing. 37% of the respondents indicate they rely solely
on manual testing at the system scope.

What consequences does this have for integration testing? Do practitioners



20 TEST CONFESSIONS: A STUDY OF TESTING PRACTICES FOR PLUG-IN
SYSTEMS 2.5

address plug-in specific characteristics during integration? The findings are de-
scribed in the following section.

2.5 Plug-In Specific Integration Testing
Our next question (RQ2) relates to the role that the plug-in nature plays during
testing, and to what extent it leads to specific testing practices.

2.5.1 The Role of PDE Tests
PDE tests are designed to test plug-in-based Eclipse applications. They are JU-
nit tests using a special test runner that launches another Eclipse instance in a
separate virtual machine. This facilitates calls to the Eclipse Platform API, as
well as launching plug-ins during the test. Furthermore, the “headless” execution
mode allows tests to start without user-interface components.

Participants often use PDE tests for unit testing purposes. According to
P1: “The problem begins when a JUnit test grows into a PDE test, because of
the dependencies on the workbench.” And P21 states: “Our PDE tests do not
really look at the integration of two components. There are often cases where you
actually want to write a unit test, but then it’s hard to write, because the class
uses something from the workbench.” Others also report that they use integration
tests for testing legacy code, and P14 reports to “use integration tests to refactor
a code passage, or to fix a bug, when you cannot write a unit test. Then, at least
you write an integration test that roughly covers the case, to not destroy something
big. That, we use a lot.”

We next ask, since Eclipse is a plug-in architecture, are there plug-in specific
aspects to consider for integration testing?

2.5.2 Plug-In Characteristics
In response to the interview questions regarding the influence plug-in architectures
have on testing, participants come up with a variety of answers. Most of the
participants consider plug-in testing as di↵erent from testing standalone Java
applications. Only P8 and P10 report to not see any influence and that testing
of plug-in systems is the same as testing monolithic Java applications.

The most often recognized di↵erence is the need to have integration tests (P9,
P14, P12, P15, P20). P14 thinks that integration testing becomes more important
in a plug-in-based set-up because: “We have to test the integration of our code
and the Eclipse code, [...] And then, you test in a way di↵erently, [...] you have
more test requirements, there are more players in the game.”

Practices di↵er in the strategies participants use to test plug-in systems and
the extension mechanism. P2 says: “I am not sure if there is a need to test if
extensions correctly support the extension point, because it is mostly a registration



2.5 PLUG-IN SPECIFIC INTEGRATION TESTING 21

thing.” Also, P13 does not address the plug-in aspect directly, but says: “Our
test cases make use of extension points, so we end up testing if extension point
processing is working correctly.” P19 presents the most advanced technique to
testing by stating: “In some cases, we have extensions just for testing in the
test plug-ins. Either the extensions are just loaded or they implement some test
behavior.” P19’s team also recommends that developers writing extensions should
look at the relevant tests because those tests demonstrate how to use the API.

P12, P16 and P19 report that the extension mechanism makes the system less
testable. P16 says: “We tried a lot. We test our functionality by covering the
functionality of the extension point in a test case, i.e., testing against an API.
The small glue code where the registry gets the extension, that’s not tested, because
it is just hard to test that. And for these untested glue code parts we had the most
bugs.” And P19 says: “Testing is more di�cult, especially because of the separate
classloaders. That makes it complicated to access the internals. Therefore some
methods which should be protected are public to enable testing.”

Participants associate many di↵erent aspects, such as improved modulariz-
ation capabilities for production and test code, with plug-in architectures and
testing. Surprisingly, only a few participants mention the extension mechanisms,
and none of the participants mention OSGi services, runtime binding or com-
binatorial problems for plug-in interactions. This finding leads to our follow-up
questions for specific plug-in testing techniques.

2.5.3 Testing Cross-Product Integration
To gain a better understanding of the participants’ integration testing practices,
we ask how they test the integration of their own plug-ins with third-party plug-ins
(i.e. cross-product integration testing), and how they deal with the corresponding
combinatorial problem.

To our surprise, none of the projects report to have automated tests to ensure
product compatibility. Many participants report that products “must play nicely
with each other”17 and that there are no explicit tests for di↵erent combinations.

Does this mean that cross-product integration problems do not occur? The
answers to this question split the participants in two opposing camps. One group
believes that these problems should not happen (P4, P5, P8, P12, P13, P14,
P17), but more than half of the participants report to have actually experienced
such problems (P2, P6, P7, P9, P10, P11, P15, P16, P18, P19, P20, P24, P25).
Some even pointed us directly to corresponding bug reports.18

Participants report that cross-product integration testing is mainly performed
manually, or in a bug-driven way (P15, P16, P18, P19). P18 explains: “We
handle problems between several plug-ins in a bug-driven way. If there is a bug we
write a test, but we do not think ahead which problems could there be.” And P10

17
http://eclipse.org/indigo/planning/EclipseSimultaneousRelease.

php

18Bug Identifier: 280598 and 213988



22 TEST CONFESSIONS: A STUDY OF TESTING PRACTICES FOR PLUG-IN
SYSTEMS 2.5

0% 10% 20% 30% 40% 50%

yes, we have AUTOMATED tests for this.
yes, but in an ad-hoc manner.

yes, we address that very thoroughly.
yes, this is done by the user community.

Figure 2.2: Cross-Product Integration Testing

reports: “There are no specific types of tests for [integrating multiple plug-ins],
but it is covered by the end user tests, and by the GUI tests, which communicate
amongst plug-ins, but the internal coverage is more random.”

In the open source domain, participants report that the community reports
and tests for problems with plug-in combinations (P6, P9, P13, P16, P19, P20).
As P19 says: “we have no automated tests for cross-product problems, but we do
manual testing. Then, we install [product 19] with [several other plug-ins] or with
other distributions, like MyEclipse, to test for interoperability.” And then he adds:
“The user community plays an important role in testing for interoperability.” User
involvement emerged as an important strategy for dealing with combinatorial
complexity, as we will see in Section 2.7.

In the survey, 43% of the participants indicate that they do not test the
integration of di↵erent products at all. Out of the 57% who stated that they test
cross-product integration, 42% claim to address this in an ad-hoc manner, and
only 3% claim to address this issue thoroughly (see Figure 2.2).

Thus, testing combinations with third-party plug-ins is not something parti-
cipants emphasize. This leads us to ask, how are they ensuring compatibility of
their plug-ins with the many di↵erent versions of the Eclipse platform?

2.5.4 Testing Platform and Dependency Versions
Only a few participants report testing for di↵erent versions of the Eclipse platform,
typically the most currently supported version. For most of the other participants,
P13’s assessment reflects what is done in practice: “A lot of people put version
ranges in their bundle dependencies, and they say we can run with 3.3 up to
version 4.0 of the platform. But I am willing to bet that 99% of the people do
not test that their stu↵ works, they might assert it, but I do not believe that they
test.”

However, in addition to the platform, plug-ins have specific versions and stip-
ulate the versions of dependencies they can work with. How is compatibility for
version ranges of plug-in dependencies tested?

In reality, many participants report that they test with one fixed version for
each dependency (P8, P9, P11, P13, P14, P15). The minority of practitioners
report that they have two streams of their systems. One stream for the latest



2.6 PLUG-IN SPECIFIC INTEGRATION TESTING 23

0% 10% 20% 30% 40%

yes, we have automated tests for this.
yes, but limited to e.g. two versions.

yes, we address that very thoroughly.
yes, this is done by the user community.

Figure 2.3: Testing versions of plug-in dependencies.

0% 10% 20% 30% 40% 50%

yes, we have automated tests for this.
yes, but limited to e.g. two versions.

yes, we address that very thoroughly.
yes, this is done by the user community.

Figure 2.4: Testing Eclipse platform versions.

versions of dependencies, and the other one for the dependency versions used in
the stable release.

Other projects report that they even ship the product with all dependencies
and disable the update mechanisms. Updating dependencies to newer versions is
often reported as a challenge. Many try to keep up to date, though some report
to update rarely (P9, P11, P14). As P14 puts it: “We always have one specific
version for platform and libraries that we use. If we update that, that’s a major
e↵ort. That we do only rarely.” And P9 says: “We use a very old version of the
main plug-in we depend on. Sometimes we update, but there is always the risk
that it will break something and then you have to do extensive [manual] testing.”

Testing version compatibility, as well as combinations of systems, is more
often applied to third-party systems (i.e. outside the Eclipse ecosystem). For
example, P10, P17, and P19 report to emphasize testing di↵erent versions of
Eclipse-external third-party systems during automated testing, but not for Eclipse
plug-ins they rely on or build upon.

Also, the majority of survey respondents indicate that they do not test ver-
sion compatibility of either the platform (55%) or of plug-in dependencies (63%).
Out of those testing di↵erent dependency versions, only 33% have automated
tests, 36% indicate to limit it to a set number of versions, and only 10% test this
thoroughly, as illustrated in Figure 2.3. Testing platform versions yields similar
results: out of the 45% who indicate they test di↵erent versions, 29% have auto-
mated tests, 45% limit testing to a set number of versions, and only 4% indicate
to address this thoroughly (see Figure 2.4).



24 TEST CONFESSIONS: A STUDY OF TESTING PRACTICES FOR PLUG-IN
SYSTEMS 2.6

2.6 Barriers for Adopting Plug-In Specific Integration Testing
Practices

In the preceding sections, we looked at adopted testing practices. In this section,
we outline barriers experienced by participants which limit adoption of plug-in
specific test practices. The set of barriers reflects what the interviewees considered
most important. To integrate the many di↵erent barriers and to identify relev-
ant factors, the constant comparison approach of GT proved particularly useful
(Glaser and Strauss, 1967).

Plug-in systems are conglomerates of several di↵erent plug-ins, with di↵erent
owners. Hence, the responsibility for integration or system testing is less clear,
especially when system boundaries are crossed. Most projects restrict their o�cial
support for compatibility with third-party plug-ins and the Eclipse platform itself.
As P8 puts it: “We only test the latest available versions of our dependencies,
those that are together in the release train.”

In plug-in systems, end user requirements are often unclear or even unknown,
which makes testing a challenge, as P7 explains: “[Project 7] is not an end-user
plug-in. Other plug-ins build on top of [Project 7], so integration testing would
need to include some other components. It is not the final, the whole thing.”
P7 also thinks that integration testing has to be done in strong collaboration
with the developers of the end-user plug-in. As an example, he mentions syntax
highlighting functionality: “Only when I know about the language [...] can I test
it and see whether it was successful or not. I need some third party component.”

Also unclear ownership of plug-ins hinders testing, as P7 explains: “You never
know, once you write a good test, it will be obsolete with the next version of
Eclipse.”

While there is a rich body of literature on unit testing (Gamma and Beck,
2003), literature on integration and system testing for plug-in-based systems is
scarce. This unavailability of plug-in testing knowledge makes it hard for beginners
and less experienced developers and testers to test Eclipse-based systems. P4
explains: “Why [testing] is so di�cult? For Web projects, you find good templates.
For Eclipse, you don’t. [...] Especially for testing plug-ins, we would need some
best practices.”

Setting-up a test environment for unit testing requires minimal e↵ort as standard
tooling (e.g., JUnit) exists. For integration, system, and GUI testing, the situation
is di↵erent. Participants, such as P4, report: “The di�culty of integration testing
Eclipse plug-ins starts with the set-up of the build – that’s di�cult.”

Also, long test execution time is often mentioned as a reason for the negative
attitudes towards integration, GUI, and system testing (P1, P4, P5, P6, P10,
P17, P21). P6 says: “The long execution time is really bad. A big problem.” And
P17 says: “It’s a di↵erence between 10 seconds and 1 minute: with 1 minute you
switch to Twitter or Facebook.”

As interviewees report, the limited testability of Eclipse can be challenging. P6



2.7 COMPENSATION STRATEGIES 25

outlines: “The problem is that the Eclipse platform is very hard to test, because
components are highly coupled and interfaces are huge, and all is based on a
singleton state. This is very hard to decouple.”

The PDE tooling and test infrastructure can also be a hurdle. P21 says: “We
use the PDE JUnit framework to write integration tests, although we are not happy
with it. It’s not really suited for that.”

All of these technical hurdles have the e↵ect that testing beyond unit scope is
experienced as “annoying” (P6), “distracting” (P17), and “painful” (P20).

2.7 Compensation Strategies
As we saw in the previous sections, participants report that test automation for
system and integration testing is modest. They also mention that integration
testing for plug-in specific aspects, like cross-feature integration, versioning and
configurations of plug-ins, is often omitted or limited to a manual and ad-hoc
approach. Does this mean it is not necessary to test those aspects? Addressing
this concern is the topic of research question RQ4, in which we seek to understand
how developers compensate for limited testing.

During the GT study, we identified three main compensation strategies, namely
self-hosting of projects, user involvement, developer involvement, and a prerequisite for
participation – openness.

2.7.1 Self-Hosting of Projects
Self-hosting refers to the process whereby the software developed in a project
is used internally on a regular basis. As P17 describes: “In our company, we
have di↵erent set-ups, based on Linux or Windows. This leads already to a high
coverage because we use our own products on a daily basis. Then you are aware
of problems and report that immediately.” In the survey, a respondent writes:
“We use ’self hosting’ as test technique. That is, we use our software regularly.
This provides a level of integration testing, since common features are regularly
exercised.”

This practice is also applied at the code level, which means that participants
report to use the API and provided extension points in their own projects. This
principle, referred to as “eating your own dog food”, is well-documented in the
Eclipse community (Harrison, 2006), and recognized for helping in managing and
testing configurations of plug-ins, including combinations and di↵erent versions.19

19
http://dev.eclipse.org/newslists/news.eclipse.platform/

msg24424.html



26 TEST CONFESSIONS: A STUDY OF TESTING PRACTICES FOR PLUG-IN
SYSTEMS 2.7

2.7.2 User Involvement
Participants also report that they involve users to “manually test” their systems,
as P9 explains: “The tests that I perform are very simple manual tests, the real
tests are coming from the users, who are doing all kind of di↵erent things with
[project 9].”

P9 is not alone with this practice. Participants openly state that they rely
heavily on the community for test tasks, such as GUI testing, testing of di↵erent
Eclipse platform versions, and system testing, and to cope with combinatorial
testing and testing of plug-in combinations. As P12 says: “Testing is done by
the user-community and they are rigorous about it. We have more than 10,000
installations per month. If there is a bug it gets reported immediately. I do
not even have a chance to test [all possible combinations]. There are too many
operating systems, there are too many Eclipse versions.”

2.7.3 Developer Involvement
The Eclipse plug-in architecture enables developers to build plug-ins on top of
other plug-ins. Because of this, users of the software are often skilled developers
whose projects also depend on and profit from the quality of the projects their
work extends. Therefore, projects dedicate part of their time to improve depend-
ent projects. As P11 states: “Yes, for the GEF part, we find and report bugs, and
we provide patches. In fact, perhaps it is not our own product, but our product
relies on this other product. So it is normal to improve the other parts that we
need.”

Projects also profit from the automated test suites of the projects they extend.
P13 explains: “That is one of the things I totally rely on, e.g., the Web Tools
Platform uses [project 13] heavily, and they have extensive JUnit tests, and so I
am quite sure that when I break something that somebody downstream will rapidly
notice and report the problem.”

In Eclipse, the release train20 is a powerful mechanism. Projects elected to be
on the release train profit from the packaging phase, in which di↵erent bundles of
Eclipse, including specific combinations of products, are created. As P13 explains:
“Some testing is performed downstream, when packages of multiple plug-ins are
produced. Some packages have plug-ins like Mylyn, [project 13], and a whole ton
of other projects. Then, there are people that test whether the packages behave
reasonably.”. And he reports that “if there are problems, people definitely report
them, so you do find out about problems.”

2.7.4 Openness – A Prerequisite for Participation
The question that remains is how to involve users and experts. In this study,
we could identify one basic but e↵ective principle, applied consistently by the

20
http://wiki.eclipse.org/Indigo/Simultaneous_Release_Plan



2.8 DISCUSSION 27

0% 20% 40% 60% 80% 100%

Giving feedback, and foster …

Providing bug reports or feature …

Providing bug fixes

Manual testing (including …

Automated testing (including …

Manual testing (including GUI, 
combinatorial testing)

Automated testing (including 
community, downstream project)

Providing bug fixes

Providing bug reports or feature 
requests

Giving feedback, and foster 

Figure 2.5: User involvement during testing

participants – openness. Openness is implemented in communications, release
management, and product extensibility.

Open source projects select communication channels that allow the community
to influence software development by giving feedback, fostering discussions, sub-
mitting feature requests, and even by providing bug fixes. In the closed source
domain, participants report that they open up their communication channels to
allow community participation. P19 reflects on the impact of user input: “I would
say the majority of the bug reports come from the community. We have accepted
more than 800 patches during the life span of this project. 1/7 of all bugs that
have been resolved have been resolved through community contributions. That’s
quite a high rate. [...] we take the community feedback definitely serious.”

An important prerequisite to user involvement is access to the software (i.e.
open release management). Many open and closed source projects adopted a
multi-tier release strategy to benefit from the feedback of the alpha- and beta-
testers that use unstable releases and pre-releases.

In the survey, 64% of respondents report to have an open issue tracking sys-
tem, and 38% report to have a publicly-accessible software repository. 40% of
respondents use mailing lists, or newsgroups to inform users, and only 26% re-
port to have a completely closed development process. Respondents also express
that users are involved in giving feedback and fostering discussions (82%), in
providing bug reports and feature requests (85%), and even providing bug fixes
(25%) (see Figure 2.5). 35% of respondents indicate that users are involved in
manual testing, including GUI testing and combinatorial testing (e.g., di↵erent
operating systems, Eclipse versions, or plug-in combinations). 12% report that
users are even involved in automated testing.

2.8 Discussion
This section discusses how the new insights on the testing of plug-in-based systems
can be used to better support the testing process, and outlines opportunities for



28 TEST CONFESSIONS: A STUDY OF TESTING PRACTICES FOR PLUG-IN
SYSTEMS 2.8

future work.

2.8.1 Improving Plug-In Testing
Since the community turns out to be vital in the testing process, a first recom-
mendation is to make this role more explicit. This can be achieved by organizing
dedicated “test days” (in line with Mozilla), or by rewarding community mem-
bers who are the most active testers or issue reporters (e.g. at annual events).
Additional possible improvements are a centralized place to collect compatibility
information,21 and clear instructions on how downstream testers can contribute
to the testing process in an ecosystem.

As an example, although downstream projects frequently execute upstream
plug-ins as part of their own testing, at present, it is hard to tell if these execu-
tions are correct. Distributing plug-ins with a test-modus (e.g. to allow plug-ins to
enable assertions), or to o↵er additional observability or controllability interfaces,
would substantially leverage these executions. The test-modus could further re-
port coverage information to a centralized server, informing the upstream plug-in
provider about features, combinations, and configurations actually tested.

We think that to leverage plug-in specific testing, and facilitate test automa-
tion, plug-in specific tool support is needed. As an example, by means of dynamic
and static analysis, test executions of plug-in systems can be visualized in order
to provide information to the developer about the degree of integration between
several plug-ins covered by a specific test suite. In (Greiler et al., 2010), we pro-
pose such a technique and introduce ETSE, the Eclipse Test Suite Exploration
tool.

In general, we see a need for the research community to revisit current test
strategies and techniques with respect to plug-in specific testing needs, in line
with Memon et al. (2010) for component-based systems.

2.8.2 Open Versus Closed Source
Our study covers open and closed source development. In the 25 interviews, this
did not seem to be a di↵erentiating factor, both reporting similar practices and
arguments.

In the survey, we can combine data on the project nature with specific test
practices. One finding is that closed source projects have less test automation
beyond unit scope. A possible explanation is that closed source projects work
more with dedicated test teams, which rely on manual testing instead. This is
consistent with the fact that closed projects report more user involvement for
manual GUI testing (30% for closed versus 23% for open source projects).

21E.g., WordPress introduced a crowd-sourced “compatibility checker” plug-
in for their plug-in directory http://wordpress.org/news/2009/10/

plugin-compatibility-beta



2.9 CREDIBILITY AND LIMITATIONS 29

Another visible di↵erence is that closed source projects adopt plug-in specific
integration testing approaches to address version or cross-product integration less
often. A possible explanation is that closed source projects often aim to create
full products (RCP applications) that are not intended for extension by others.

To discuss these di↵erences in detail calls for additional research, which we
defer to future work.

2.9 Credibility and Limitations
Assessing the validity of explorative qualitative research is a challenging task
(Onwuegbuzie and Leech, 2007; Golafshani, 2003). With that in mind, we discuss
the credibility and limitations of our research findings.

2.9.1 Credibility
One of the risks of grounded theory is that the resulting findings do not fit with the
data or the participants (Bryant and Charmaz, 2007). To mitigate this risk, and to
strengthen the credibility of the study, we performedmember checking and put the
resulting theory to the test during a presentation to approximately 100 developers,
and during a birds-of-a-feather session at EclipseCon. Further, we triangulated
our findings in the interviews with an online survey filled in by 151 professionals,
which helped us to confirm that the main concepts and codes developed resonate
with the majority of the Eclipse community. Although there was a possibility of
bias, we assume we conducted an open-minded study which led to findings we
did not expect. We closely followed grounded theory guidelines, including careful
coding and memoing, and revisited both the codes and the analysis iteratively.
We provide rich descriptions to give insights into the research findings, supported
by a 60-page technical report (Greiler et al., 2011), and also provide the coded
framework in Appendix A to increase transparency on the coding process. Threats
to external validity (i.e. questioning whether the outcomes are valid beyond the
specific Eclipse setting) are addressed in the following section.

2.9.2 Beyond Eclipse
Are our findings specific to open source? The compensation strategies identified
certainly benefit from the open nature of Eclipse. However, the strategies them-
selves are not restricted to open source and can be applied in other settings (e.g.
with beta-users). Furthermore, more than half of the 25 interviewees and the 151
survey respondents are working on closed source projects.

Our findings indicate a trade-o↵ between test e↵ort and tolerance of the com-
munity for failures in the field. In an open source setting, the community may
be more tolerant and willing to contribute. In a closed source setting, it may
take more organizational e↵ort to build up such a community, such as with beta



30 TEST CONFESSIONS: A STUDY OF TESTING PRACTICES FOR PLUG-IN
SYSTEMS 2.10

testing programs. Note that for some application domains, there is zero tolerance
for failure, such as with business- or safety-critical systems. Therefore, we do not
expect our findings to generalize to such systems.

Another concern might be the developer-centric focus of Eclipse. For ex-
ample, the developer involvement discussed in Section 2.7 assumes the ability to
report and possibly resolve issues found in the plug-ins used. Note, however, that
other findings, such as the test barriers covered in Section 2.6, are independent of
whether the applications built are intended for developers. Furthermore, the Ec-
lipse platform is also used to create a large variety of products for non-developers.

Clearly, the plug-in-based nature of Eclipse plays an important role, and is
the center of our research. We consider a plug-in system as a specific form of
a dynamic system with characteristics such as runtime binding, versioning, and
combinability. For systems sharing such characteristics, we expect to find similar
results. Further, most of the outcomes are independent of the specific plug-in
architecture adopted. An investigation to exactly di↵erentiate between various
groups of dynamic systems is still an open issue as well as an excellent route for
future work.

2.9.3 Beyond the People
A limitation of the current study is that it is based on interviewing and surveying
people only. An alternative could have been to examine code, design documents,
issue tracking system contents, and other repositories (Hindle et al., 2010; Zaid-
man et al., 2011). Note, however, that achieving our results with repository min-
ing alone would be very hard as many test-related activities do not leave traces
in the repositories. Furthermore, our emphasis is on understanding why certain
activities are taking place. However, we see repository mining as an opportunity
to further evaluate selected findings of our study, which we defer to future work.

2.10 Related Work
A few surveys have been conducted in order to reveal software testing prac-
tices (Ng et al., 2004; Garousi and Varma, 2010). Our study is substantially
di↵erent. While these surveys focus on reporting testing practices, our study had
the additional aim of understanding why certain practices are used or are not used.
In a survey, researchers can only address a previously defined hypotheses. Our
preceding GT study allowed first to emerge a theory about the testing practices,
and to let the structure and the content of the survey follow from the theory.

As an implication, while other surveys concentrate on pre-conceived barriers
to testing, such as costs, time and lack of expertise, we could address a much
wider range of factors of an organizational and technical nature, as expressed by
the participants themselves. Further, the GT findings drove the selection of test
practices included in the survey. This allowed us to concentrate on facts specially



2.11 CONCLUDING REMARKS 31

relevant for plug-in systems (reflected in a separate section of the survey), and
in turn to omit questions such as generation of test cases or defect prevention
techniques used in previous studies.

There is substantial research on analyzing di↵erent aspects of open source
software (OSS) development. Mockus et al. (2002) analyze the Apache web server
and the Mozilla browser in order to quantify aspects of OSS development (e.g.
reported by Raymond (2001)). Raja and Tretter (2009) mine software defects and
artifacts to understand several variables used to predict the maintenance model,
which also leads them to several hypotheses on the e↵ect of users participation.
West et al. report on the important role of openness for community participation,
and confirm that a modular software architecture decreases the barrier of getting
started and joining an open source project (West and Siobhán, 2008). von Krogh
et al. (2003) developed an inductive theory on how and why people join an existing
open source software community.

Whereas those studies address open source, our findings apply to open and
closed source software development. Furthermore, the focus of our study lies on
software testing, a topic not covered in the earlier research.

Whereby research on configuration-aware software testing for highly-configur-
able systems (i.e. product lines) focuses on the combinatorial problems during
interaction testing by detecting valid and invalid combinations of configuration
parameters (e.g., by means of a greedy algorithm), our work reveals broader test-
ing practices and problems during plug-in testing experienced in practice (Cabral
et al., 2010).

2.11 Concluding Remarks
The main findings of our study are:

1. Unit testing plays a key role in the Eclipse community, with unit test suites
comprising thousands of test cases. System, integration, and acceptance
testing, on the other hand, are adopted and automated less frequently.

2. The plug-in nature has little impact on the testing approach. The use of ex-
tension points, plug-in interactions, plug-in versions, platform versions, and
the possibility of plug-in interactions rarely lead to specific test approaches.

3. The main barriers to adopting integration testing practices include unclear
accountability and ownership, lack of infrastructure for setting up tests eas-
ily, poor testability of integrated products, and long execution time of in-
tegration tests.

4. To compensate for the lack of test suites beyond the unit scope, the com-
munity at large is involved, by means of downstream testing, self-hosting,
explicit test requests, and open communication.



32 TEST CONFESSIONS: A STUDY OF TESTING PRACTICES FOR PLUG-IN
SYSTEMS 2.11

These findings have the following implications:

1. The integration testing approach implicitly assumes community involve-
ment. This involvement can be strengthened by making it more explicit, for
example through a reward system or dedicated testing days.

2. Deferring integration testing to deployment calls for an extension of the
plug-in architecture with test infrastructure, facilitating (e.g. a dedicated
test modus) self-testing upon installation, runtime assertion checking, and
tracing to support (upstream) debugging.

3. Innovations in integration testing, typically coming from research, will be
ignored unless they address the barriers we identified.

While our findings and recommendations took place in the context of the
Eclipse platform, we expect that many of them will generalize to other plug-
in architectures. To facilitate replication of our study in contexts such as the
Mozilla, Android, or JQuery plug-in architectures, we have provided as much
detail as possible on the design and results of our study in the corresponding
technical report (Greiler et al., 2011).

With this study, we made a first step to understand the current practices and
which barriers exist when testing plug-in-based systems. In addition, this study
should encourage the research community to facilitate technology and knowledge
transfer from academia to industry and vice versa.

Acknowledgment
We would like to thank all participants of both the interviews and our surveys for
their time and commitment.



Chapter3
What your Plug-in Test Suites Really
Test: An Integration Perspective on
Test Suite Understanding

Abstract
Software architectures such as plug-in and service-oriented architectures enable
developers to build extensible software products, whose functionality can be en-
riched by adding or configuring components.1 A well-known example of such an
architecture is Eclipse, best known for its use to create a series of extensible IDEs.
Although such architectures give users and developers a great deal of flexibility
to create new products, the complexity of the built systems increases.

In order to manage this complexity developers use extensive automated test
suites. Unfortunately, current testing tools o↵er little insight in which of the many
possible components configurations and combinations of components are actually
tested. The goal of this paper is to remedy this problem.

To that end, we interview 25 professional developers on the problems they ex-
perience in test suite understanding for plug-in architectures. The findings have
been incorporated in five architectural views that provide an extensibility per-
spective on plug-in-based systems and their test suites. The views combine static
and dynamic information on plug-in dependencies, extension initialization, exten-
sion and service usage, and the test suites. The views have been implemented in
ETSE, the Eclipse Plug-in Test Suite Exploration tool. We evaluate the proposed
views by analyzing eGit, Mylyn, and a Mylyn connector.

1This chapter is published in the Empirical Software Engineering journal, November 2012.
The authors of this publication are Greiler and van Deursen.

33



34 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.1

3.1 Introduction
Plug-in architectures are widely used for complex systems such as browsers, devel-
opment environments, or embedded systems, since they support modularization,
product extensibility, and run time product adaptation and configuration (Chat-
ley et al., 2004; Marquardt, 1999; Mayer et al., 2003). A well-known example
of such an architecture is Eclipse2 which has been used for building a variety of
extensible products, including a range of development environments for di↵erent
languages (Shavor et al., 2005).

The size and complexity of software products based on plug-ins can be sub-
stantial. To deal with this, software developers rely on extensive automated test
suites. For example, in their book Contributing to Eclipse, Gamma and Beck
emphasize test-driven development of Eclipse plug-ins (Gamma and Beck, 2003).
Likewise, the Eclipse developer web site3 describes the structure of the unit and
user interface tests that come with Eclipse.

A consequence of systematic automated testing is the test suite understanding
problem: Developers working with such well-tested plug-in-based architectures,
face the problem of understanding a sizable code base along with a substantial test
suite. As an example, the Mylyn4 plug-in for Eclipse comes with approximately
50,000 lines of test code. Developers responsible for modifying Mylyn, must also
adjust the Mylyn test suite.

To address the test suite understanding problem, researchers have identified
test smells pointing to problematic test code, test refactorings for improving them,
and have proposed visualizations of test execution (Cornelissen et al., 2007; van
Deursen et al., 2002; Meszaros, 2007; Van Rompaey et al., 2007). Most of the
existing work, however, focuses on the unit level. While this is an essential first
step, for plug-in-based architectures it will not reveal how plug-ins are loaded,
initialized, and executed dynamically. As an example, just starting Eclipse loads
close to one hundred plug-ins. Since these plug-ins do have interactions, looking
at plug-ins in isolation yields insu�cient insight in the way the dynamic plug-in
configuration is exercised in test suites.

In this paper, we seek to address the test suite understanding problem beyond
the unit level. Our approach includes the following steps.

First of all, in order to get insight in the nature of this problem, we interview
25 senior professionals from the Eclipse community on their testing practices.
This study was set up as a Grounded Theory study (Adolph et al., 2011; Corbin
and Strauss, 1990). The outcomes include a number of challenges professional
developers face when confronted with complex test suites for the plug-ins they
are working on.

Subsequently, to address these challenges, we propose a series of architectural
views (van Deursen et al., 2004) that can help engineers understand plug-in inter-

2
http://www.eclipse.org

3
http://wiki.eclipse.org/Eclipse/Testing

4
http://www.eclipse.org/mylyn



3.2 BACKGROUND: MODULARIZATION IN ECLIPSE 35

actions. These views are tailored towards the plug-in architecture of the Eclipse
ecosystem. Thus, they support not only regular plug-ins as software composi-
tion mechanism, but also dynamic extension-points, through which a plug-in can
permit other plug-ins to extend its functionality. Furthermore, they address the
OSGi module system Eclipse is based on, as well as its service platform,5 which
o↵ers an additional extensibility mechanism based on services.

The five views that we propose to o↵er insight in these extension mechanisms
are the Plug-in Modularization, the Extension Initialization, the Extension Usage,
the Service Usage, and the Test Suite Modularization views. They will be dis-
cussed in full detail in Section 3.4. To construct these views, we deploy a mixture
of static and dynamic analysis.

To evaluate the applicability of these views, we discuss their application to
three open source Eclipse plug-ins (each built from various plug-ins). We analyze
the eGit plug-in system6 permitting the use of the git versioning system within
Eclipse, the substantial collection of plug-ins that comprises the Mylyn plug-in for
work item management, and the Mylyn connector for the issue tracking system
Trac.7

The paper is structured as follows. Section 3.2 provides the necessary back-
ground material on plug-in architectures. In Section 3.3, we present the findings of
the interviews, which reveal the need for support during test suite understanding.
Section 3.4 describes our approach, and covers the reconstructed architectural
views. Section 3.5 discusses the architecture of our tool suite for reconstruct-
ing these views, after which we evaluate the views based on three case studies
in Section 3.6. We reflect on the case study findings in Section 3.7, after which
we conclude with a summary of related work, contributions, and areas for future
research.

This paper is a substantially revised and extended version of an earlier paper
(Greiler et al., 2010). The major changes include the addition of the analysis
of information needs (Section 3.3), the addition of the service usage and test
suite modularization views (Section 3.4), and a new case study based on Trac
(Section 3.6).

3.2 Background: Modularization in Eclipse
Plug-in-based dynamic modularization systems are widely used to create adaptive
and configurable systems (Chatley et al., 2004; Marquardt, 1999; Mayer et al.,
2003). For Java, a well known example is OSGi,8 which o↵ers a service registry,
life cycle management, and dynamic updating.

5
http://www.osgi.org

6
http://www.eclipse.org/egit

7
http://wiki.eclipse.org/Mylyn_Trac_Connector

8
http://www.osgi.org



36 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.2

The Eclipse plug-in architecture9 is built on top of OSGi, through the Equi-
nox10 implementation of the OSGi standard. Eclipse groups classes and packages
into units, the so called plug-ins. Plug-in applications, like the well known Eclipse
development environment, are composed from constituent plug-ins coming from
di↵erent developers. We call the collection of all plug-ins forming a common ap-
plication, including the plug-in architecture itself, a software ecosystem. A plug-in
consists of code and meta data file, the manifest. The manifest describes, among
others, the required and provided dependencies between plug-ins, and the plug-in
version and author.

Plug-ins represent the basic extensibility feature of Eclipse, allowing dynamic
loading of new functionalities. Plug-in P can invoke functionalities from other
plug-ins Pi. At compile time, this requires the availability of the constituent
plug-in’s Java interfaces, giving rise to a usage relation between P and Pi.

A next level of configurability is provided by means of the extension mech-
anism, illustrated in Figure 3.1. Plug-in A o↵ers an extension-point, which is
exploited by B to extend A’s functionality. As an example, A could define a
user-visible menu, and B would add an entry with an action to this menu.

An extension may be an executable extension contributing executable code
to be invoked by the extended plug-in, a data extension, contributing static in-
formation such as help files, or a combination of both (Shavor et al., 2005). For
executable extensions, a common idiom is to define a Java interface that the actual
extension should implement, as shown in Figure 3.1.

A plug-in declares the extensions and extension-point it provides in an XML
file. In addition, each extension-point can describe the expected syntactic de-
scriptions of extensions by means of an optional XML schema file. From the
extension declarations we can derive an extension relation from extensions to
extension-points.

Last but not least, the Eclipse platform also uses OSGi services to allow loosely
coupled interactions. OSGi services are objects of classes that implement one or
more interfaces (The OSGi Alliance, 2011). These services are registered in the
service registry under their interface names. Other services can discover them by
querying the service registry, e.g., for the specific interface name. The registry
returns a reference which acts as pointer to the requested service object. The two
main mechanisms to provide and acquire services are either programmatically
via a call to the service registry, or via a dependency injection mechanism (i.e.,
declarative services).

Even though at the moment, extension-points and extensions are still the
dominant extension mechanism, OSGi services are becoming more and more im-
portant in the Eclipse architecture. Especially the next Eclipse platform version,
codename e4,11 bets on services to solve the problem of tight coupling within

9
http://www.eclipse.org/articles/Article-Plug-in-architecture/

plugin_architecture.htm

10
http://www.eclipse.org/equinox

11
http://www.eclipse.org/e4



3.3 INFORMATION NEEDS 37

Plug-in B
<extension name="extensionB"  

point="A.pointID">
|
|

Plug-in A
<extension-point
   id="pointID">

|
|

Interface IExtension class ExtensionBimplements

contributes to

creates, calls

Figure 3.1: The Eclipse plug-in extension mechanism

the current Eclipse architecture. The e4 platform introduces a new programming
model defining how plug-ins communicate beyond the extension mechanism. The
introduced service programming models rely on three distinct parties, namely the
service providers, service consumers, and a service broker. Using those, e4 defines
a set of core services covering the main platform functionality.

Eclipse has explicit support for the testing of plug-ins, through its Plug-in De-
velopment Environment (PDE) and the corresponding PDE tests. PDE tests are
written in JUnit, whereby execution of the test cases di↵ers. A special test runner
launches another Eclipse instance in a separate virtual machine and executes the
test methods within that environment. This means the whole infrastructure (i.e.
the Eclipse Platform API) is provided. Further, the developer can, beside the
plug-ins under test, include and exclude various other plug-ins to be presented
within the test environment.

3.3 Information Needs

In order to identify the information needs that developers have when working
with plug-in test suites, we interviewed 25 Eclipse practitioners (henceforth ’Ec-
lipsers’). The information needs that emerged from these interviews are described
in Section 3.3.3.

These interviews were conducted in the context of a much larger study, aimed
at identifying test practices adopted in plug-in architectures. The general findings
of that study are published elsewhere (Greiler et al., 2012a), and are only briefly
summarized in the present paper (Section 3.3.2).

The full results we have available from this larger study form a rich empirical
data set. In the present paper we report, for the first time, the findings on test
suite understanding challenges specifically.



38 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.3

Domain Project and/or Company

IDEs, Eclipse Distribution Yoxos, EclipseSource

SOA Mangrove, SOA, Inria

GUI Testing Tool GUIDancer, Bredex

Version Control Systems Mercurial, InlandSoftware

Modeling xtext, Itemis

Modeling IMP, University of Amsterdam

Persistence layer CDO

Domain Specific Language Spoofax, Delft University

of Technology

BPM Solutions GMF, BonitaSoft

GUI Testing Tool Q7, Xored

Coverage Analysis EclEmma

Modeling EMF, Itemis

BPM Solutions RCP product, AndrenaObjects

Scientific data acquisition OpenGDA, Kichacoders

Runtime platform RAP, EclipseSource

Task Management system Mylyn, Tasktop

Embedded Software MicroDoc

RCP product EclipseSource

Table 3.1: Domains, projects and/or companies involved in the interviews

3.3.1 Set-up Interviews
We conducted 25 interviews over Skype or telephone (each taking 1–2 hours) with
selected professional developers from the Eclipse community. The participants are
working on various well known Eclipse projects, as illustrated by Table 3.1. These
include Mylyn and eGit, two projects we use as case study to evaluate the views
presented in this paper as well. Almost all participants have been developers
focusing on plug-in development and testing, except P3 and P10 who are both only
involved in testing plug-in-based systems, as detailed in Table 3.2. Approximately
half of the projects are open source and the other half closed source projects.

To structure the interviews, we composed a guideline, which we adjust after
each interview, as our insight in the testing processes increases. The guideline
comprises questions on the overall development setting, their general testing prac-
tices and then zooms in particular on integration testing techniques, and potential
characteristics or challenges of testing plug-in-based system. In addition, we in-
vestigated which challenges Eclipsers are facing during understanding test suites.

The study followed a Grounded Theory design, a research method from the
social sciences aimed at distilling theories from documents, interviews, and other
qualitative data (Bryant and Charmaz, 2007; Corbin and Strauss, 1990; Glaser
and Strauss, 1967). Grounded theory is increasingly used in software engineering
research (Adolph et al., 2011), for example in the area of API documentation
(Dagenais and Robillard, 2010), reviewing in open source projects (Rigby and



3.3 INFORMATION NEEDS 39

P Role CR TS Technology KLOC

P1 developer C 4-7 Eclipse plug-in closed

P2 project lead O 6 Eclipse plug-in 90

P3 tester C 7-8 Eclipse plug-in, 370

RCP product

P4 developer O 3-10 Eclipse plug-in 90

P5 developer C 3-7 OSGi 280

P6 project lead O 6-9 Eclipse plug-in 1700

P7 project lead O 2-5 Eclipse plug-ins 50

P8 project lead O 12 Eclipse plug-in 670

P9 project lead O 3 Eclipse plug-in 90

P10 test C 20-50 Eclipse plug-in closed

manager RCP product

P11 developer O 7-11 Eclipse plug-in 710

P12 project lead O 1-2 Eclipse plug-in 12 & 56

P13 project lead O 5-7 Eclipse plug-in 2000

P14 developer C 5 RCP product 350

P15 project lead O 20 RCP product 850

P16 developer O 7-10 Eclipse plug-in 1500

P17 developer C/O 5-6 Eclipse plug-in 2500

P18 project lead C 4 RCP product 100

P19 developer C/O 6-9 Eclipse plug-in 2500

P20 developer O 7-10 RCP product 1000

P21 developer C 4-10 RCP product 80-100

P22 developer C 3-5 Eclipse 140

distribution

P23 project lead C 5-7 RCP product closed

P24 developer C 8 RCP product 400

P25 project lead C 7-12 RCP product closed

Table 3.2: Participants involved (P: participants, CR: code repository (closed or open),
TS: team size)

Storey, 2011), and spreadsheet programming (Hermans et al., 2011).

3.3.2 Summary: Eclipse Testing Practices
During the interviews we asked Eclipsers about their testing practices. In sum-
mary, Eclipsers invest in testing their systems, and see testing as an essential
task of the software engineering process. Nevertheless, unit testing is described
as the predominant automated testing practices, whereas integration testing, GUI
testing and system testing practices are less adopted.

On the other hand, interviewees express their belief that integration tests
are especially essential for plug-in-based systems. They report on technical and
organizational barriers for performing integration, GUI, and system testing prac-
tices. The main challenges are long test execution times, immature test tooling



40 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.3

or missing test infrastructure, high maintenance e↵ort, as well as limited time for
test design and execution (Greiler et al., 2012a).

Our interview results for Eclipse testing practices are also supported by liter-
ature. Gamma and Beck (2003) provide best practices for testing Eclipse, and,
thus, for plug-in-based architectures, in general. Their book emphasizes test-
first development of plug-ins. It does not focus on integration testing of plug-in
systems. Guidelines for testing Eclipse12 emphasize unit testing as well as user
interface testing for which capture-and-playback tools are used.

The literature addressing OSGi testing focuses on the provisioning of the in-
frastructure required during the set-up of integration tests (Rubio, 2009). We
have not been able to find test strategies for OSGi targeting integration testing
of dynamic modularization systems in general, or plug-in systems in particular.
Literature many Eclipsers are aware of and mentioned in the interviews is for ex-
ample the book “Clean Code” by Martin (2008), which propagates the importance
of clean and structured test code.

3.3.3 Test Suite Understanding Needs
During the interviews we asked the participants how easy or di�cult the task
of understanding test suites is, and which information would facilitate the task.
Participants described two main scenarios to interact with the test code (i.e. un-
derstanding individual test cases and test suites), each implying di↵erent inform-
ation needs. In the following sections, we will discuss the identified information
needs and present excerpts of the interviews. A summary of all nine identified
information needs (referred to as N1 – N9) is presented in Table 3.3. We will use
those identifiers in the remaining of the paper to refer to the information needs.

Understanding Test Cases

Participants describe that understanding a particular and limited part of the test
suite, i.e., a few test cases, is a common requirement during development. Either
a failing test case has to be looked at, e.g., during bug fixing or refactoring, or
a new test case has to be developed. This can be due to bug fixing, or feature
development. The developer then has to read and understand only a specific test
case he or she is pointed to, for example, a failing test, a bug identifier or a code
reference. In this case, participants describe they do not need to understand the
whole test suite. Some participants also describe they are completely unfamiliar
with tests written by other developers, because their tasks only require under-
standing of their own code and particular test cases, and the ability to run the
whole test suite. As participant P17 says: “You do not have to understand the
whole test suite. You just have to understand the part you are currently working
on. And there are very many tests I have never seen, because I am not working
on this part of the system.”

12
http://wiki.eclipse.org/Eclipse/Testing



3.3 INFORMATION NEEDS 41

Coding Standards, Naming Conventions. To understand one specific test
case the developer needs to understand the source code of the test (N1). The
most essential requirement to understand source code is to have “good code”, as
P11 outlines: “It depends if it is easy [to understand tests]. Tests are also like
other parts of code. Sometimes people give bad names to their methods and vari-
ables. Then it is hard to understand. For tests it is the same, but if you give good
name, good comments, then it is easy to understand.”

But also the format of a test case must be well structured to facilitate under-
standing of test code, as P17 reports: “Tests have to be written similar to a work
specification, like click here, execute that and check the result. And it should not
be like 300 lines of test code. Then, nobody understands what’s going on. More
like a step by step description, and it’s important to have good test names.” P18
explains: “We have a standardized form for test cases, and also naming conven-
tions, that helps a lot. We also write tests in form of Given-When-Then, like
described in the book ‘Clean Code’13 (Martin, 2008)”.

Explanation and Motivation. Next to readable code, developers mention to
need explanations and motivations for tests (i.e. why a test is needed or which
requirements are checked by a certain test (N2)). P7 explains what he thinks
would facilitate test code understanding: “You need a requirements document.
[...] That is the starting point. To know what you want from the system. If I
want an overview of what the test should be, then I need an overview of what the
requirements are. So if you read now some of the unit tests, at the moment there
is no motivation. It would say, e.g., ’I test if this is commutative’, but why we
test that is nowhere. So, there is no motivation why we test that, or explanation.”

One countermeasure some Eclipsers mention is being careful in the way as-
sertions are written. As P11 explains: “we are trying to put assertions in which
we explain well what we are doing.” Still, also assertions might be hard to in-
terpret and documentation might be needed. According to P12 the reason for a
test (N2) and what is addressed by a test (N3) should be clear: “What I think
would be very valuable is to describe the scenario, maybe just in form of an in-line
document. And describing what you actually test and why that should be tested.
And especially with assertions, there you often have just a number, e.g., 15, and
then, you should explain why it has to be like that.” He adds: “It happens quite
often that you look at a test after some time has passed and actually you really
cannot understand anymore what’s the scenario, or what is actually tested. That’s
a problem, even for small projects, but more severe for larger projects.”

But understanding single test cases might not be enough - practitioners might
also be faced with the need of understanding the whole test suite. Then, di↵erent
challenges are faced, which we discuss subsequently.

13This style is originally from domain-driven design (Evans, 2003).



42 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.3

Understanding Test Suites

Challenges. The second scenario involves comprehending the complete test
suite in order to be able to assess quality and coverage of test scenarios. To
master this task, developers need to understand which part of the system under
test are not covered (N4), which can be challenging as P14 explains: “What one
specific test does, that’s quite easy to understand. What’s di�cult is to see where
the blank spots on the map are.”

Test suites can be quite complex and comprise di↵erent types of tests, as
P10 describes: “Even if we leave the unit tests out, we have some thousands of
tests, which are GUI tests of di↵erent complexity, but also API tests for UDDI or
JAXR, or other interfaces.”

Understanding such test suites requires to get an overview of all test cases (N5),
as P7 explains: “It is di�cult. You have to read it all. Every method tests
something. Every test method is sort of a definition of the semantics that it tests.
If you skip one test, you do not know one part of the system. These tests are also
only testing one plug-in, but [my component] itself has around 6 or 7 plug-ins.”

Following P7, for plug-in systems it might not be enough to know the test
suites of one plug-in or product. Eclipsers face the need of understanding the
integration with several plug-ins/products and their test suites (N6), as also P10
explains: “If you know the product then keeping an overview of the test suites is
not so di�cult. But then, we sell several bundles of products, maybe ten di↵erent
products together, that’s a di↵erent dimension. And those have to work together of
course. This means you have to know the other products, and then the number of
people that know what tests are doing is small. As a single person, to be familiar
with all products, that’s a challenge and most people are not.”

The results of this study show that understanding plug-in test suites is a
complex and challenging tasks. P14 says: “Comprehending the test suite gives us a
big headache. And what we realized is that actually we have only two possibilities:
either we work on a particular point, and we run only one test case, the one
responsible for this piece of code, or we run all of them. We worry very often
about not being able to run the test suite in a more fine-grained way.”

Test Organization and Structure. Understanding the organization and struc-
ture of test code is often mentioned as an information need (N7), and developers
express that they are careful during organizing test code. Even though projects
might have their own way of organizing test suites, it is common to categorize
them according to the plug-ins they belong to, the system features they cover, or
use cases they address. But there are also often correlations of tests to code and
tests to issues reported.

In the words of P8: “We have two di↵erent folders: one for all the actual test
classes which test bigger features, and one folder for test cases sorted according
to their Bugzilla number. There, the Bugzilla number is always in the test class
name.”



3.4 INFORMATION NEEDS 43

P19 outlines: “Our tests have the same modular structure as our components.
Normally, we combine 1 to 5 plug-ins in one component. And then we have for
each component one test plug-in that comprises all tests for all 5 plug-ins.”

Participants report that a clear structure of the test code, often following the
(package) structure of the production code can facilitate the need to locate (find)
test code (N8).

Plug-ins and Extensions. During test execution of a PDE test, hundreds of
plug-ins and their extensions are loaded. Keeping track of which plug-ins and
extensions are currently active in a test environment is a challenging task (N9),
as P6 explains: “The problem with extension-points is that if you start PDE tests
with the workbench then you have to be careful that the workspace is in a good
state. All kinds of projects, also if they are not on the class path of the test project,
contribute to the extension-points and can create strange side e↵ects and lead to
surprises.”

P19 expresses the need to understand how test suites and cases for foreign
plug-ins test extensions, as he says: “We also have dedicated extensions in the
test plug-ins, whose only purpose is to be initialized. Or a particular behavior
is implemented in those extensions, and then we test against this test behavior.
All our tests are available in the CVS, and we recommend to developers who are
developing an extension to look at those tests, because they also demonstrate how
to use the APIs.” A requirement to be able to investigate foreign tests for API
understanding is to locate tests addressing certain extensions, services or plug-
ins (N8).

Nested Test Suites. It is also common that the test suites themselves are modu-
larized, as P17 outlines: “We have nested test suites, e.g., one version for version
X of [plug-ins of the sub-product], and this test suite is then part of the test suite
testing all versions of the [plug-ins of the sub-product], and this test suite is then
part of the [product] test suite, and the [product] test suite is part of the test suite
testing multiple products.” Also P8 says: “Tests are nested. But I have to say that
JUnit is the most stupid technology existing. Inside it’s horrible, and the worst
thing is that it uses reflection and the name of the class to instantiate the test,
and because we use di↵erent scenarios, then we can not di↵erentiate anymore. To
get that running, we had to hack around a lot. It would be better to instantiate the
test classes.” The problem P8 describes is that when running nested test suites
it is not obvious what is actually tested by which sub-test suite, and how the test
environment has been set up (N3 and N9).

In summary, the interviews showed that test suite understanding is a cum-
bersome and complex task. Well-developed test code, standardized formats for
test cases, and documentation can facilitate this task. Also test organization and
structuring support test suite understanding.



44 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.4

Information Need - Test Suites

ID Need P

N1 Understanding test (source) code P11,17,18

N2 Understanding the reason (requirements) for a test P3,7,11,12,19

N3
Identifying what is tested by a test,

P8,11,12,14
test plug-in and (assembled) test suites

N4 Identifying blank spots P3,7,10,14

N5 Getting an overview of test suites P7,10,14

N6 Understanding integration with other plug-ins P7,10

N7 Understanding test organization P8,10,12,13,18,19

N8 Locating test code P13,19

N9 Identifying what influences the test execution environment P6,8

Table 3.3: Distilled information needs

3.4 Models for Understanding Plug-in Test Suites
The interviews just presented demonstrate that Eclipse developers indeed face a
test suite understanding problem. This problem can be partially addressed by
regular support for program comprehension (such as dynamic analysis, (Cornelis-
sen et al., 2009) software architecture reconstruction (van Deursen et al., 2004),
or reengineering patterns (Demeyer et al., 2003)) as well as methods aimed at
understanding unit test suites (Cornelissen et al., 2007; van Deursen et al., 2002;
Meszaros, 2007; Van Rompaey et al., 2007). Furthermore, guidelines on how to
set up (JUnit) test suites by, e.g., Martin (2008), Feathers (2004) or Freeman and
Pryce (2009), will help to avoid and resolve overly complex test suites.

In this paper, we look beyond regular unit testing, and zoom in on the test-
ing challenges imposed by plug-in architectures. To that end, we propose five
architectural views.

The goal of the first view, the Plug-in Modularization View is to provide such
structural and organizational awareness with respect to the code-dependencies of
plug-ins. Equipped with this basic structural knowledge, the second step is the
analysis of the extension relations between plug-ins and the way they are exercised
by the test suite. This is realized through the Extension Initialization View. The
Extension Usage and Service Usage Views complete the picture by providing the
developer with insight in the way the test suite exercises the actual methods
involved in the extensions and services. Finally, the Test Suite Modularization
View helps to relate this information to the di↵erent test suites executed.

In this section we present these views, state their goal, and formulate the
information needs they address. In terms of the Symphony software architecture
reconstruction process (van Deursen et al., 2004), for each view we distinguish a
source model corresponding to the raw data we collect, a target model reflecting
the view that we eventually need to derive, as well as mapping rules between
them. In what follows we present a selection of the meta-models for the source



3.4 MODELS FOR UNDERSTANDING PLUG-IN TEST SUITES 45

commons.tests

commons.ui commons.net commons.core commons.xmlrpc

Figure 3.2: Static dependencies of test-component “commons.tests” in Mylyn

commons.tests

commons.ui commons.net

Figure 3.3: Dynamic dependencies of test-component “commons.tests” in Mylyn

and target models involved, as well as the transformation between them.

3.4.1 The Plug-in Modularization View
The Plug-in Modularization View that we propose is a simple way to provide
insight in the static as well as dynamic dependencies between plug-ins and the
test code. The developer can use this view to answer such questions as “which
plug-ins are tested by which test-component?”, “where are test harness and test
utilities located?”, and “which tests are exercising this plug-in?”. In the inter-
views, Eclipsers expressed that such information is essential for supporting test
suite understanding (N7). Also modularization capabilities of OSGi are often
used to structure and organize test suites, e.g., create one test plug-in for several
plug-ins. This view can help to understand how the di↵erent plug-ins depend
on each other, and exemplify the structure of the system under test and the test
plug-ins.

The static part of the view can be obtained through simple static analysis of
plug-in source code and meta-data, taking the test suites as starting point. The
dynamic dependencies are obtained by running instrumented versions of the code
reporting all inter-plug-in method calls.

This view is illustrated for the test-component commons.tests of Mylyn show-
ing its static code-dependencies in Figure 3.2 and its dynamic code-dependencies
in Figure 3.3. On the left we see that commons.tests statically depends on four
other plug-ins. The dynamic representation on the right side, reveals that only
two out of those four plug-ins are actually exercised in a test run. It does not
explain why this is the case (reasons could be that the test suite requires manual



46 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.4

Extension Initialization View

extension-point

test method

    

shows 

initializes 

plug-in

     

provides 

extension     

tested by 

provides

extends 

Figure 3.4: Meta model of the Extension Initialization View

involvement, or that a di↵erent launch configuration should be used), but it steers
the investigation towards particular plug-ins.

3.4.2 Extension Initialization View
The Plug-in Modularization View just described provides a basic understanding
of the test architecture and the code-dependencies between all test artifacts and
their plug-ins. This is a prerequisite for the subsequent step of understanding the
test suite from the more fine-grained extensibility perspective.

By means of this perspective, we will not only be able to tell which extensions
and extension-points are tested in the current test suite (N3), but we also gain
insight in the system under test and its extensibility relations. For example,
keeping track of which extensions are initialized during a test run is an information
need expressed by P6 (N9), which can be satisfied by this view. The meta model
of this view is illustrated in Figure 3.4, by means of a UML class diagram.14

The view contains plug-ins, the extensions and extension-points they provide, as
well as test methods that initialize the extensions. Extension initialization is the
process of activating an extension (i.e. loading its classes). This di↵ers from using
an extension which means invoking a method of its classes.

The view helps answering questions on extensions and the way they are tested
at system, plug-in, and test method scope. The main focus of the view is revealing
which plug-ins in the system under test influence the functionality of each other
through the extension mechanism, and which of those influencing relations are
activated by a test suite.

System Scope. At system scope, the view gives insight in the extension rela-

14Drawn using UMLet version 11.3 (see http://www.umlet.com/)



3.4 MODELS FOR UNDERSTANDING PLUG-IN TEST SUITES 47

tions present in the system under test, i.e., which plug-in contributes to
the functionality of another plug-in. This is visualized in one graph, as
shown in Figure 3.13 for one of our case studies. The graph presents the
overall contributions of the systems, i.e., all extension-points and extensions
within the system under test. In case plug-in A declares an extension-point
and plug-in B provides an extension for it, the graph shows a link between
the two nodes. The labels (fractions) on the links represent the number
of statically declared extensions (denominator) one plug-in provides for the
other, and the number of extensions that are actually used during a test run
(numerator).

Plug-in Scope. Zooming in to the plug-in level, the view presents the relations
of all extension-points declared by a given plug-in to existing contributions
(i.e., extensions) contained in by the system under test.

This can be visualized, e.g., by means of a graph. An example is given
in Figure 3.14, again for our Mylyn case study. The graph presents all
involved plug-ins as ellipse-shaped nodes. Extension-points are represented
as rectangles. Relations between an extension-point and a plug-in providing
an extension are presented as edges. Extensions that are actually used
during the test run are filled with a color. Thus, Figure 3.14 shows that 5
extensions are actually used, but that extension tasks.ui is not used. The
view can also be used to show all extensions declared by the system under
test for extension-points inside and outside the system under test. This
means the view shows how the system under test influences the ecosystem
during a test run, as shown in Figure 3.16.

Test Method Scope. At method scope, the developer can observe which test
methods have invoked the code of an extension-point responsible for load-
ing extensions, and which extensions have been created for it. For example,
from Figure 3.15, the developer knows that test method “testShadowsStruc-
tureBridge()” triggers extension-point “mylyn.context.core.bridges” to load
all available extensions. In this way, a developer or tester can identify the
location of the test-code for a particular extension-point.

Underlying Meta-Models

This view is based on static meta data and dynamic trace information. The meta
data comes from the mandatory XML file, and from the optional XML-schema
file (see Section 3.2).

The trace used for this view comprises “extension initialization events” during
the test run. The underlying trace data follows the meta model shown in Fig-
ure 3.5, which is also used to derive dynamic information for the other views. An
“extension initialization event” is recorded before a method named “createEx-
ecutable()” is called. In the Eclipse Platform, this method is used to create the



48 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.4

trace event

method call

object

plugin

signature

sender receiver

extension initialization

target

has

caller

has

belongs to 

runtime class

has

extension-point extension

loaded by initializes
has

service registration

registers

Figure 3.5: Trace meta model

extension from a given class, passed as parameter. This also is the point we in-
tercept to trace the caller of this method and the target-object, by means of an
aspect.

This trace data shows only the initialization of an extension. It does not show
the usage of this extension, which would be the invocation of a method of the
class of the extension.

Reconstructing the View

The data behind this view comprises the static meta data files for extension and
extension-point declaration, and the information gained by tracing the creation
of extensions during a test run.

The dynamic trace comprises only executable extensions, because only those
are created by the method we trace. An alternative to include also data extensions
is to intercept not the creation of an extension, but the look-up of extensions from
the plug-in registry. We decided against this approach for two reasons: first, the
views would become more complex. Second, data extensions, i.e., extensions
that enhance the system only with static data, are less interesting from a testing
perspective.

Thus, before we can compare the static and dynamic data sources, we have
to know which extensions are data extensions, and which extension-points load
only data extensions. An executable extension has to state at least one class in
its meta data file, used to instantiate the extension. Thus, to determine the type
of an extension we analyze the presence or absence of classes in the meta data



3.4 MODELS FOR UNDERSTANDING PLUG-IN TEST SUITES 49

Extension Usage View

extensiontest method tested by 

extension method

has

extension-point

extends

shows 

extension class

has

invokes

Figure 3.6: Meta Model of the Extension Usage View

file.
An extension-point, on the other hand, states the class an extension has to

be based on in the XML-schema file. We analyze these schemes to retrieve the
attributes defining the base class. However, an XML schema is not mandatory.
If it is missing, we try to find an actual extension for the extension-point. If that
extension contains a class, we conclude that the extension-point is executable,
otherwise it is a data extension-point. If we cannot find an extension we classify
the type of the extension point as unknown.

The remaining data can be filtered and grouped, to show which extensions
have been created, by which extension-points, and which test method is involved.
The underlying data also exposes information about the usage of an extension. To
take advantage of that, the Extension Usage View is introduced in the following.

3.4.3 Extension Usage View
The Extension Usage View focuses on characterizing the usage of an extension
during the test run. The goal of this view is to give the developer or the tester
an understanding of how the integration of the extensions has been tested (N6).
The question it addresses is “which extensions have been actually used during the
test run, and when and how have they been used?”

The target meta model of the Extension Usage View is illustrated in Figure 3.6.
In this view, extensions are referenced by their name. Extensions are furthermore
related to the extension-points they target, and to the test methods exercising
them. Recall from Figure 3.1 that extension-points can declare types (interfaces
or classes) that are implemented by actual extension classes.

The Extension Usage View can be used at system, extension, and usage level.
On system scope, we can gain detailed information about which of the declared



50 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.4

extensions have been actually used during a test run, and how many of the test
methods are associated with extension usages. Using an extension means to invoke
a method of the extension class, overwritten or inherited by the type declared at
the extension-point. For example, from Figure 3.17 we can see a list of extensions
that have been used during the test run (left side).

Zooming in to the extension scope, the developer can see which test methods
have used a given extension. For example, on the right side of Figure 3.17, we
can see that the extension “mylyn.tasks.ui” has been used during the execution
of four test methods. This information is helpful to spot the right piece of code
responsible for the extension usage, e.g., to enhance or change it.

A refinement of this view to the method scope shows how the extension has
been used during the test run, for example illustrated by the pop-up window
in Figure 3.17. Here, all methods of an extension that have been called during
testing are listed.

With these views, the tester gains knowledge about which integrations of ex-
tensions have been tested (N3), and can locate test code responsible for the usage
of an extension (N8). This helps in understanding the usage of the extension and
its API, which P19 has identified as an important task.

Underlying Meta-Models

The execution trace used to construct the Extension Usage View is the same as
the one used for the initialization view. It comprises detailed method calls of a
test run, as shown in Figure 3.5.

We trace all public calls directed to the system under test. For each extension,
we calculate all types that the extension is based on and that are declared by the
extension-point, as explained in the next subsection. Subsequently we trace all
method calls to these types. Since we trace dynamically, extension calls can be
resolved to the actual objects and methods executed.

Reconstructing the View

To construct this view, we need in addition to the dynamic data discussed before,
all the methods an extension can implement. Those methods can be used by an
extension-point to invoke it. We will refer to this set as to the extension method
set. Therefore, the extension-point has to define a specific base type (e.g. a class
or an interface), which can be extended by an extension. To give a simple
example, let us look at Listing 3.1. Here, the class Extension represents the
base type of an extension. This class is defined within the plug-in providing the
extension-point. Also within the plug-in defining the extension-point, the code is
located which is in charge of invoking all loaded extensions, as illustrated by the
method invokeExtensions() of class ExtendsionUsage. A plug-in which wants to
provide an extension for this extension-point has to extend the base class, as done
by classes B and C. Those classes can be part of another plug-in.



3.4 MODELS FOR UNDERSTANDING PLUG-IN TEST SUITES 51

Listing 3.1: Extension Usage Example

abstract class Extension{
void me();

}

class ExtensionUsage{
void invokeExtensions(Extension [] extensions){
for(Extension e : extensions)
e.me(); }

}

class B extends Extension {
void me() {}
void mb() {}

}

class C extends Extension {
void me() {}
}

An extension-point often uses the meta data files (i.e. the plugin.xml) to
specify which type it expects. But, Eclipse does not force an extension-point to
declare formally the base type, which means we might have to derive our extension
method set based on a heuristic. Our heuristic works as follows.

First, in case the extension-point formally declares a base type for an extension,
the algorithm uses this to derive recursively all methods defined by it and its
super-types, i.e., interfaces and ancestors. This collection represents the extension
method set. For our example in Listening 3.1, the method set comprises just
method me().

In the case no base type is provided, the algorithm collects all the classes a
given extension declares from its meta data file. Starting from these types, the
algorithm recursively derives all super-types of these classes. Note, however, that
not all of them might be visible to the extension-point. For example, consider a
class A, defined in plug-in Pa, that extends class E, defined in plug-in Pe and
implements Interface I also defined in Pa. Since no declaration of a base class is
provided, the algorithm has to decide whether A is based on I or E. This example
is illustrated in Figure 3.7.

The algorithm classifies types as visible for the extension-point if they are
declared outside of the plug-in providing the extension. Contrary, a type is con-
sidered as invisible when declared within the plug-in of the extension. Those are
excluded from the type set. Applying this to our example reveals that the base
class has to be E.

If the extension and the extension-point are declared in the same plug-in all
types are considered relevant. This results in an conservative heuristic, i.e., it
cannot miss a relevant type, but might include too many. From the resulting set



52 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.4

«interface»
I

A

E

Plug-in Pa Plug-in Pe

Figure 3.7: Deriving an Extension Base Type

of types the extension method set can be derived.
Applying this algorithm to the example of Listing 3.1 reveals that, in case

class B is defined within another plug-in, method mb() will not be visible to
the extension-point, and is therefore excluded from the extension method set. In
case class B is defined within the plug-in defining also the extension-point the
algorithm will declare class B as a potential extension class and include methods
me() and mb() in the extension method set.

Finally, the trace is inspected for calls made to methods included in the method
set. Only when the traced runtime-class corresponds to the class of an extension,
the call is considered as an actual usage in a particular test method.

Based on this analysis, the view shows for every extension which test methods
have caused their usage, and which methods out of the extension method set have
been used.

3.4.4 Service Usage View
The Eclipse plug-in architecture builds on top of OSGi. Especially in the new
e4 version of the Eclipse platform, OSGi services are an important extensibility
mechanism. Services are a means to decouple plug-in interactions, and allow inter-
changeability of service providers, which also improves testability of the system.
The Service Usage View helps in understanding which services are used during
test execution (N3). It helps answering questions like “which plug-ins acquire or
register which services?”, and “how are these services used during test execution?”
The meta model of this view is illustrated in Figure 3.8. A concrete example of
this view for the usage of the service “IProxyService” is given in Figure 3.18.
From this view, it is apparent that this service was used during the execution of
five test methods.

This view also makes explicit which concrete instantiation of a service is used
and invoked during the test run. This is important information in order to determ-
ine the configuration of the test environment or to configure the test environment
correctly, which is a challenge P6 pointed out (N9).



3.4 MODELS FOR UNDERSTANDING PLUG-IN TEST SUITES 53

Service Usage View

servicetest-method tested by

service method

has

service-interface
implementsshows

service class

has

invokes plug-in

acquired by

provided by

invokes

Figure 3.8: Meta Model of the Service Usage View

Underlying Meta-Models

OSGi services can be registered and obtained either programmatically (see Listing
3.2 for some examples) or by using dependency injection defining services in an
XML-file (i.e., declarative services). To obtain the static data representing service
registration and acquisition, we analyze the plug-in’s byte code for service regis-
tration or service acquisition, as well as the meta data for the use of declarative
services.

The dynamic data required is provided by two execution traces. First, one
trace covers method call events, as described in Section 3.4.3. Second, service
registration events, as illustrated in Listing 3.2, are traced.

Reconstructing the View

To construct this view, we need in addition to the dynamic execution trace data,
the method set of a service which can be invoked by a service user. We will refer
to this set as to the service method set. Determining this service method set is
easier than determining the extension method set, since we always know the base
type for a service. From this type on, we recursively derive all super-types of this
base type, as discussed before.

All methods of this set of types contribute to the service method set, which is
used to analyze the trace for service usage. During the analysis of the byte code for
service registration, only the base type, e.g., the interface a service implements,
might be known, while the runtime type is unknown. Therefore the runtime
type of the service registered is determined by tracing the registration events
during runtime. Only when the traced runtime-class corresponds to the class of
a registered service, the call is considered as an actual usage in a particular test
method.



54 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.4

Listing 3.2: Excerpt programmatic service registration and acquisition

/ Service Acquisition /
public void getService(BundleContext c){
// 1) Direct Acquisition of a service
ServiceReference serviceReference = c.getServiceReference(IProxyService.class.getName());
IProxyService service = (IProxyService) c.getService(serviceReference);

// 2) Via a ServiceTracker
ProxyServiceTrackerCustomizer custom = new ProxyServiceTrackerCustomizer(c);
ServiceTracker serviceTracker=new ServiceTracker(c, IProxyService.class.getName(), custom);
serviceTracker.open();
...

/ Service Registration /
public void registerService(BundleContext c){
IProxyService service = new ProxyService();
c.registerService(IProxyService.class.getName(), service, null);
...

Based on this analysis, the view shows for every service, which plug-ins re-
gistered or acquired this service, and which test methods have caused a service
usage, as well as which methods out of the service method set have been used.

3.4.5 The Test Suite Modularization View

For complex Eclipse plug-ins, it is common practice to assemble individual test
cases into di↵erent test suites. Examples are suites for specific versions of re-
quired plug-ins or external services, fast test cases run during development, more
time consuming test cases depending on the user interface (workbench) or net-
work access, and so on. These suites are often assembled programmatically, and
sometimes involve the creation of di↵erent fixtures in order to run the same test
cases under di↵erent circumstances.

The Test Suite Modularization View aims at clarifying how test cases are
grouped into (nested) test suites at run time. It maps assembled test suites to (1)
the test plug-ins that contribute test cases; and (2) plug-ins under test. It helps
answering questions like “which plug-ins contribute tests to this particular test
suite?”, “which plug-ins are tested by this test suite?”, and “which extensions,
extension-points and/or services get addressed by this test suite?”. The meta
model of this view is illustrated in Figure 3.9. This view helps the developer to
choose the right test suite to execute, to understand which entities are tested by
a particular test suite, or to assemble a new, customized test suite addressing
the right plug-ins of the system, and satisfies information needs N3, N7 and N8

expressed in Section 3.3.3.



3.5 IMPLEMENTATION AND TOOL ARCHITECTURE 55

Test Suite Modularization

test suite

test method

has
service

shows

plug-in

contributes

extension

tests
tests

Figure 3.9: Meta Model of the Test Suite Modularization View

Underlying Meta-Models

This view is based on static meta data and dynamic trace information. The meta
data comes from the plug-in manifest files of the plug-ins, the mandatory XML
file for extension and extension-point definition, from the optional XML-schema
file (see Section 3.2), the XML-definitions for declarative services, as well as from
the analysis of the byte code for service registration or acquisition.

The dynamic data comes from two traces. First, a trace comprising method
calls during the test run, and second, the trace comprising “service registration
events” as illustrated by the trace meta model in Figure 3.5.

Reconstructing the View

To reconstruct this view the static meta data and trace data is combined, and
the algorithms already discussed, e.g., to derive the extension or service method
sets, are used. Then grouping of the data takes place to reveal which plug-ins
contribute test cases to the test suite, which plug-ins have been executed during
the test run of this test suite, and which extensions and services have been used.

3.5 Implementation and Tool Architecture
We implemented the reconstruction and presentation of our views in ETSE,15

the Eclipse Test Suite Exploration Tool. It is implemented in Java, o↵ers an
API to construct the views in question, and a graphical user interface which is
implemented as Eclipse extension, which integrates the tool in the Eclipse IDE.

ETSE consists of three logical modules: a module dedicated to information
gathering, a module responsible for knowledge inference and a module responsible

15ETSE is available at http://swerl.tudelft.nl/bin/view/Main/ETSE



56 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.5

Information 
Gathering

Knowledge Inference
Presentation

Repository

Instrumentation

AspectJ

Source 
Views Source 

Views
Target 
Views

Target 
Views

Eclipse 
Plug-in

Graph-Viz
Fact Extraction

bcel
Plug-in 
Mod.
View

Extension
Init.
View

Extension
Usage
View

Data
class files
Test Suite

Data
plugin.xml

XML-schema
Manifest
class files Service

Usage
View

Test
Suite
Mod.
View

Figure 3.10: ETSE Architecture

for the presentation of the views, as shown in Figure 3.10.

Module: Information Gathering. This module is responsible for gathering static meta
data as well as for gathering execution traces during test execution. To analyze the
static Java code we use the Byte Code Engineering Library,16 which inspects and
manipulates the binary Java class files. Meta data, including the OSGi manifest,
the service definitions and the plugin.xml files, is collected and analyzed. The
user can instruct ETSE which test suite and which system under test should be
examined by using the “Configuration tab” provided by ETSE’s user interface.
To trace the execution of the test run, we use aspect-oriented programming, in
particular the AspectJ17 framework. Because we do not want to intercept plain
Java applications, but Equinox, the Eclipse implementation of OSGi, we are using
the Equinox aspects framework.18 This provides load time-weaving of advices, i.e.,
when a class is loaded by OSGi. There are four main groups of aspects that can be
di↵erentiated: the aspect used for weaving into the initialization of the extensions,
the aspect used to trace method calls, the aspect used to trace plug-in starts and
stops, and the aspect used to trace registration and acquisition of OSGi services.
All the analyzed data is finally stored as source views, in a format similar to the
meta model illustrated in Figure 3.5, in a repository.

16
http://jakarta.apache.org/bcel

17
http://www.eclipse.org/aspectj

18
http://www.eclipse.org/equinox/incubator/aspects/

equinox-aspects-quick-start.php



3.6 IMPLEMENTATION AND TOOL ARCHITECTURE 57

Module: Knowledge Inference This module uses the data gathered during inform-
ation gathering, and transforms the source views to the di↵erent target views,
among those the Plug-in Modularization, Extension Initialization, the Extension
and Service Usage Views, and the Test Suite Modularization View. These trans-
formations implement the algorithms presented in this paper.

Module: Presentation The presentation module is used to visually represent the
target views to the user of ETSE. Target views can be saved as comma separated
value files, which a user can later visualize ad libitum. Also ETSE can visualize
those files for the user. First, ETSE allows users to store the target views in the
dot-graph format, which then can be visualized by Graphviz,19 a graph visual-
ization package. Furthermore, ETSE is integrated in the Eclipse IDE, where it
provides a graphical user interface allowing the user to interact easier with the
tool. Within this paper we show visualizations based on dot-graphs, as well as
visualizations rendered by ETSE’s user interface within Eclipse. A screenshot
of the ETSE Eclipse integration showing the Extension Initialization View is
provided in Figure 3.11. Users can for example navigate between views, or define
di↵erent level of detail for each view, as detailed below.

Navigation between scopes ETSE presents each architectural view in a separate
tab within an Eclipse “view”. The user can easily switch between the architectural
views by activating the desired tab. Within each tab, the user can navigate
between the several scopes discussed in this paper (i.e., system, plug-in, extension,
service or method scope). For example, in the Extension Initialization View, the
user can switch between the plug-in or the system scope by activating a radio
button. In the Extension and Service Usage View, the user will first see a list of all
the extensions respectively service that have been used during a particular test run
on the left side (i.e. system scope). By selecting an extension/service from the list,
all test methods which have triggered a use of that particular extension/service
are shown on the right side (i.e. extension resp. service scope). The user can
further zoom in on method scope by clicking on a particular test method. This
will cause a pop-up window to appear and to show which methods of the selected
extension/service have been used during execution of the selected test method.
All scopes of this view are illustrated in Figure 3.17. Further, the user can also
request to see the source code of the test method by left-clicking on the test
method. Then, the Java class comprising the test method is opened and visualized
within the editor.

19http://www.graphviz.org



58 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.6

Figure 3.11: Screenshot of the ETSE Eclipse integration showing the Extension Ini-

tialization View



3.6 EVALUATION 59

3.6 Evaluation
We evaluate the proposed architectural views with respect to applicability, scalab-
ility, and accuracy. This leads to the following research questions:

RQ1: Which information about the test suite and system under test can be ob-
tained by the proposed views and to which extent does the information provided
by the tool address the information needs identified?

RQ2: To what extent do the views scale to large systems?

RQ3: To what extent are the views a correct representation of the system under
test?

Our evaluation is explorative in nature, aimed at generating an understanding
about the applicability of the proposed views. Therefore, the evaluation has been
set up as a case study involving three (open source) systems, to try to answer our
research questions.

3.6.1 The Subject Systems
One experimental subject is eGit, a plug-in system designed to integrate the
source control management system Git into Eclipse. The eGit system is a good
fit for our evaluation, mainly because it is a relatively new system under active
development, which uses also the new Eclipse technologies (e.g., services). In the
last year (i.e., 2011), it grew from around 30,000 to nearly 100,000 lines of code,
and from 1,700 to 14,000 lines of test code. eGit consists of five main plug-ins, and
two test plug-ins. We investigated the four main test suites: The All-Tests suite
executing 95 test cases and located in the egit.core.test plug-in. The All-JUnit-
Tests suite, executing 23 test cases, the All-Non-SWT-Tests suite, executing 62
test cases, and the All-SWT-Tests suite executing 129 test cases. The latter ones
are all located in the egit.ui.test plug-in.

The other study subject is Mylyn, a task management system for Eclipse.
Mylyn has been chosen because it is a large-scale plug-in system, and gives valu-
able insights on the ability of the views to help comprehending such a complex
system, as well as to the scalability of the views. We used Mylyn 3.4 for Eclipse
3.5. The Mylyn core comprises 27 plug-ins, which come with 11 test compon-
ents. Additional contributions, like connectors, apart from the Trac connector
discussed below, are excluded from this study. The source code under study
comprises 200,000 lines of code, and the test suite has 30,000 lines of code. We
investigate the included AllComponents test suite which runs 518 test cases, and
the AllHeadlessStandaloneTests test suite running 92 test cases.

The last subject system is a Mylyn connector for the issue tracking system
Trac. We choose the Trac-Mylyn connector for two reasons: First, it is of 8,500
lines of code and 3,400 lines of test code, a quite small, but well-tested plug-
in system that permits, in addition to the investigation by means of the views,



60 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.6

View Information Needs addressed by View
ID Need Questions addressed

PMV

N3 Which plug-ins or packages are tested by this test plug-in?
N4 Which plug-ins or packages are not tested?
N7 Which tests address this plug-in? Where are test utilities located?

EIV

N3 Which extensions are loaded?
N4 Which extensions are not loaded?
N5 On system level, how is the integration of plug-ins tested?
N6 How do plug-ins of the system under test interact with each other?
N8 Which test method causes the extension-point to load extensions?
N9 Which extensions might influence the test execution environment?

EUV

N3 Which extensions or which extension methods are invoked?
N4 Which extensions or extension methods are not used?
N5 How many extensions are used during a test run? How many are missed?
N8 Which test method triggers a use of this extension?

SUV

N3 Which services or methods of a service are invoked?
N4 Which services or method of a service have not been tested?
N5 How many services have been registered or used? Which have not?
N8 Which test method invokes or registers this service (method)?
N9 Which concrete services are used?

TMV
N3 Which plug-ins, extensions or services are addressed by this test suite?
N7 Which plug-ins contribute tests to this particular test suite?
N8 In which test plug-in is this particular test located?

Table 3.4: Distilled information needs; Views: Plug-in Modularization View (PMV),
Extension Initialization View (EIV), Extension Usage View (EUV), Service Usage View
(SUV), Test Suite Modularization View (TMV); What is tested (N3), Blank spots (N4),
Overview (N5), Integration (N6), Structure (N7), Location (N8), Environment (N9).

manual inspection of the complete system. Second, we choose it because it is
referred to in the Mylyn Contributor Reference20 as the system to look at, in
case a new connector for Mylyn should be developed. The Trac-Mylyn connector
consists of three plug-ins and one test plug-in.

We analyzed all three subject systems completely by tracing and generating
all views with ETSE, and investigated each view also on all di↵erent abstraction
levels. Within this evaluation, we outline and discuss mainly the Mylyn system, as
it represents the most challenging system (because of the size) for our techniques.
Most of the views illustrated for Mylyn are equally good for the other two subject
systems. In case the analysis of one of the other two subject systems yields
di↵erent results, we present these deviations within this section.

3.6.2 RQ1: Applicability and Information Needs
In this section, we investigate which information about the test suite and system
under test can be obtained by the proposed views and to which extent does the
information provided by the tool address the information needs identified.

20
http://wiki.eclipse.org/Mylyn/Integrator_Reference#Creating_

connector_projects



3.6 EVALUATION 61

trac.tests

trac.core trac.ui trac.wiki

Figure 3.12: Plug-in Modularization View for Trac

Answering RQ1: In summary, the five proposed views satisfy many of the
information needs identified concerning test suite understanding. They can help to
understand and investigate test code and the system under test from a top-down
approach. The views help to understand what (i.e. plug-ins, extension-points,
extensions and services, as well as their methods) has been tested (N3), and what
has been left out (N4). They provide an overview of the test suites (N5), highlight
the integration with other plug-ins (N6), shed light on the test organization (N7)
and the configuration of the test execution environment (N9), and help to locate
test code (N8). On the other hand, the views are not suited to investigate the
system from a bottom-up approach, i.e. start with a single test case. Information
needs such as understanding source code (N1) or the reasons behind tests (N2)
are not covered by these views. The relations between views and information
needs are summarized in Table 3.4.

The following subsections provide a detailed evaluation of each view. We do
so by going through the use of the views for Mylyn followed by a reflection on the
strengths and weaknesses of the views. Since Mylyn uses only one service, the
Service Usage View will be explained by looking at the eGit system.

Plug-in Modularization View

The Plug-in Modularization View aims at providing a first high-level overview of
dependencies at the top-most level of plug-ins. An example of a plug-in modular-
ization view was shown in Figures 3.2 and 3.3 for the Mylyn test component. It
shows the four plug-ins the Mylyn test component statically depends on, as well
as the two that are actually executed during testing. A similar view is shown in
Figure 3.12, displaying which of the Trac plug-ins are involved in testing. These
views highlight which plug-ins a test plug-in depends on statically and also which
of those are actually invoked during a test run (N3, N4). This information can be
valuable to understand the structure and organization of test as well as produc-
tion code (N7). Structure of test and production code plays an role during test
suite understanding (see Section 3.3.3).



62 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.6

com
m
ons.core

tasks.bugs

0/1

tasks.ui

0/1

6/6

context.ui

1/1

w
eb.tasks

0/2

tasks.search

2/2

context.core

0/1

1/1

ide.ant

1/1

java.ui

1/1

pde.ui

1/1

resources.ui

1/1

1/2

1/1
2/2

2/2
2/2

ide.ui

1/1

0/1

tasks.core

0/1

team
.ui

2/2

team
.cvs

1/1

Figure 3.13: Extension Initialization View on system scope showing static and dynamic
dependencies based on extension-points



3.6 EVALUATION 63

context.core

bridges internalBridges relationProviders

context.ui ide.ant java.ui pde.ui resources.ui tasks.ui

Figure 3.14: Extension Initialization View on plug-in scope based on extension-points

Extension Initialization View

By means of the Extension Initialization View, we get an overview of the system
under test (N5) and of how the integration of several plug-ins has been tested (N6).
We see that the 27 plug-ins in Mylyn o↵er 25 extension-points to contribute func-
tionality, and also that they declare 148 extensions to enhance their functionality
and that of Eclipse. Furthermore, we can use this view to understand how the 148
extensions are related to the 25 extension-points within the system under test,
and which of those relations have been covered by the test suite.

This view at system scope for Mylyn is illustrated in Figure 3.13. ETSE allows
to remove common prefixes from the plug-in names to improve readability, as we
did with “org.eclipse.mylyn”. An edge between two plug-ins means that one plug-
in declares an extension-point for which the other plug-in provides an extension.
Only plug-ins with actual extension relations, which means that a plug-in exists
providing an extension-point and another one using it, are shown, reducing the
number of nodes to 15. From this representation of the system, it is apparent
which plug-ins influence each other, and also which of those relations have been
actually addressed by the test suite (N3), and which have been left out (N4).
The view abstracts from the specific extension-points declared. The fraction on
the edge states how many of the static declared extensions (denominator) are
activated during a test run (numerator).

At plug-in scope, this view for plug-in mylyn.context.core is illustrated by Fig-
ure 3.14.21 The plug-in provides three extension-points, namely bridges, intern-
alBridges and relationProviders. The view shows that within Mylyn six plug-ins
exist that use extension-point bridges to influence the plug-in, represented by the
six nodes connected to this extension-point. The coloring of five nodes indicates
that only five of the relations are activated during the test run. The view does
not give explanations, but points to one plug-in the developer might manually
inspect and find an empty XML declaration for this extension.

The developer can also zoom at method scope, as illustrated by Figure 3.15.
This view reveals which test method causes this extension-point to load its ex-

21ETSE can also export graphs as dot-files, which can then be visualized with GraphViz.



64 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.6

Figure 3.15: Extension-Initialization View on test method scope

Figure 3.16: Extension Initialization View for extensions of Trac on plug-in scope

tensions, and can be used to locate test code (N8).

The Extension Initialization View serves to show how plug-ins a↵ect each
other’s behavior. The present view does not show how the system under test is
influenced by its ecosystem, i.e., the Eclipse platform. Nevertheless, the borders
defining the system under test can be chosen by the viewer, thus allowing the
developer to include parts of Eclipse he or she is interested in. Also for smaller
systems, like the Trac connector, this view is helpful, as it shows how the system
enhances (extends) the ecosystem during the test run. For example, Figure 3.16
shows that plug-in “trac.ui” has four extensions enhancing the Eclipse ecosystem,
out of which two extensions are initialized during this test run, and one extension
is a data extension.

The Extension Initialization View visualizes information about the integration
of plug-ins within the system under test (N5, N6), the coverage of these integration
points during test execution (N3, N4), as well as about the configuration of the
test environment (N9). This covers several information needs about plug-ins and
extensions raised in Section 3.3.3. For example, this view can answer the question
of P6, who wants to know which plug-ins in the system under test can influence
the functionality of other plug-ins. On method scope this view also allows to locate
test code addressing (N8) a given extensions and thus facilitating understanding
of test organization and structure.



3.6 EVALUATION 65

Extension Usage View

The Extension Usage View helps to understand how the test suite addresses in-
tegration with respect to extensions. It gives an overview of how many extensions
have been used during the test run (N5), and whether extensions have been only
initialized or whether there has been a method invocation (N3, N4). For example,
from Figure 3.17, the developer can see that in total 32 extensions have been used
during this test run, whereby 18 extensions have been just initialized, and for 14
methods of these extensions have been invoked. 172 test methods have caused
a usage of an extension during this test run. On a detailed level, this view al-
lows to locate the test code related to an extension (N8). In Figure 3.17, the
developer clicks on an extension of interest, for example on extension of plug-in
“mylyn.tasks.ui” for the extension-point exportWizards, and on the right hand
side, the view shows all four test methods that trigger a method invocation of
this extensions.

Further, the view sheds light on the structural testing approach followed by
this test suite, e.g., how many of the methods of an extension have been used
and which have been left out (N3, N4). The developer can see this information
by double clicks on an extension of interest. For example in Figure 3.17, the
developer can see from the pop-up window that method “performFinish()” and
method “getContainer()” of the extension for exportWizards, declared in plug-in
“mylyn.tasks.ui”, have been invoked by the test method “testExportAllToZip()”.
Such structural information about the coverage of extensions and their methods
by particular test suites can help the developer to identify “blank spots” (i.e.
untested functionality) as expressed as an information need by developer P14 in
Section 3.3.3.

Service Usage View

The Service Usage View helps to get an overview of which services are used during
a test run (N5). In eGit two services, the “IJSchService” and the “IProxySer-
vice” service, are acquired. eGit also provides one service, namely the “Debug-
OptionsListener” service.

In the Service Usage View, illustrated in Figure 3.18, the developer sees that
only the service “IProxyService” is used during the test run, in six di↵erent test
methods. If the developers zooms in further, the view reveals which methods
of the service have been invoked during this test run (N3) and which ones have
not (N4).

The Service Usage View helps not only to see which services are registered
and used within the system under test, but also reveals which service provider has
been actually chosen during test execution (N9). Furthermore, the view shows
which services have been tested by which test methods (N8). Similar to the
Extension Usage View, this view also reveals how many and which methods of a
service have been actually used in this test run.



66 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.6

Figure 3.17: Extension Usage View showing the system scope (left side), the extension
scope (right side) and the method scope (pop-up) for Mylyn

Figure 3.18: Service Usage View on system and service scope for eGit



3.6 EVALUATION 67

Figure 3.19: Test Suite Modularization View showing which plug-ins contribute tests

The plug-in systems investigated in this study still make limited use of ser-
vices, mainly because they are designed to work with Eclipse 3.5-3.7. In future,
we anticipate that the usage of services within Eclipse will increase drastically,
especially with introduction of the new version of Eclipse, e4. In e4, the main
platform API, known as the “twenty things”22 are provided by services. More and
more Eclipse plug-in projects get ready for the transition to the new technologies
in e4. At the moment, developers are not concerned with services in association
with test suite understanding, as they only use few or none of them. On the other
hand, they are well aware of their future importance and the evolution towards
adoption. When adoption raises, structural information about the coverage of
services and their methods by particular test suites will be as valuable to identify
untested functionality, or scenarios, as this information for extensions.

Test Suite Modularization View

The Test Suite Modularization View helps to understand what is tested by a
certain test suite (N3), and which plug-ins are contributing tests (N7). From
Figure 3.19, the developer sees that test plug-in “mylyn.discovery.tests” contrib-
utes five test cases, and that two other plug-ins namely “mylyn.tasks.tests” and
“mylyn.common.tests” contribute test cases to this test suite. On a more detailed
level, the view shows which plug-ins are tested by those test plug-ins, and also
which test cases are using those plug-ins (N8).

22
http://www.eclipse.org/e4/resources/e4-whitepaper.php



68 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.6

In Figure 3.20, this view shows the three test plug-ins, and reveals (when
opening those plug-ins) which plug-ins under test have been addressed by test
cases from this test plug-in. For example, test plug-in “mylyn.tasks.tests” ad-
dresses ten plug-ins under test. When expanding one of those plug-ins, e.g.,
“mylyn.monitor.core” we see which test cases, in this case only one called “test-
RequestCredentials”, addresses this plug-in.

The Test Suite Modularization View helps to understand which test compon-
ents contribute tests to a certain test suite (N7), and which plug-ins are tested
during a test execution (N3, N4). During the interviews, the developers expli-
citly indicated this kind of information is helpful to them. Without our view, a
developer might use the information provided by the standard JUnit framework
integration in Eclipse, to understand what a test suite addresses. The JUnit
framework allows to inspect a test run, based on a tree representation. While this
standard visualization shows which test cases are executed, as well as the out-
come for each test case, it does not reflect which plug-ins under test are tested,
nor which test plug-ins contribute tests.

The test suite modularization view, on the other hand, addresses the cor-
relation between test suite, plug-ins contributing test cases, and the plug-ins
that have been tested in this test run. The developer can tell, e.g., from Fig-
ure 3.20, that in this test suite the plug-in “mylyn.tasks.tests” contributed test
cases “testRequestCredential”, and that during the execution of this test case,
plug-in “mylyn.monitor.core” has been tested.

This view helps to cover information needs related to the inspection of coverage
of plug-ins and extensions (N3, N4) and to test organization (N7, N8), as identified
in Section 3.3.3. For example, the test suite modularization view allows to inspect
the test run in terms of entities (i.e. plug-ins, extensions or services) covered
within each test suite, and also helps to understand test organization as it reveals
which (test) plug-ins contribute tests.

3.6.3 RQ2: Scalability
We evaluate the scalability of the views with respect to their understandability
by human viewers and in terms of the size of the trace files. Answering RQ2:
In general, the views provide several abstraction levels (e.g, system, plug-in and
method scope) to better cope with scalability issues. The views scale well to
the case studies at hand, both in terms of space requirements and in terms of
understandability of the presented views for an observer.

In the following, we discuss scalability for the views in more detail at several
of the abstraction levels o↵ered by the views.

Understandability Our views are based on visualizations of graphs, trees, and tab-
ular data. We manage the inherent limitations of these representations by allow-
ing users to filter data (restricting the view to, e.g., particular extensions) and



3.6 EVALUATION 69

Figure 3.20: Test Suite Modularization View showing which plug-ins are tested

by o↵ering views at di↵erent levels of abstraction (e.g., system, plug-in, method
scope).

For example, the number of top-level entities for the Test Suite Modularization
View for Mylyn is 11, corresponding to the 11 test plug-ins of Mylyn, while the
next level consists of 27 plug-ins. The lowest level in this view is comprised by
individual test methods, of which there are 518 for Mylyn, which can be managed
by (un)folding parts of the tree representation.

Likewise, the extension and the service usage view present information that
can be consumed per item. This means the entities do not have to be put in
relation to each other by the viewer. Therefore, we consider this view as scalable,
independent of the size of the system under test or the number of extensions. At
all scopes, the viewer will be either interested in a summary of the data, like 15
out of 58 created extensions have been used, or the developer is concerned with
a particular extension, service or method.

The Extension Initialization View for Mylyn displays 15 plug-ins related to
extension initialization, a number which still yields comprehensible graphs. Like-
wise, eGit provides 53 extensions, of which 16 are initialized during the test run. If
the view is applied to all extension-points of the full Eclipse workbench, the graph
may comprise hundreds of nodes, which is less likely to be understandable. Such
a use of this view, however, would not be the typical usage scenario: the views are
intended to shed light on the extension relations of particular clusters of plug-ins,
such as those of Mylyn. Note that the understandability of the view at plug-in
scope depends on the number of extension-points defined per plug-in, and not
on the overall size of the system under test. This means that for a small system



70 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.6

like eGit, the view can be as helpful as for a large-scale system. In both subject
systems, the views have an average of 2 and a maximum of 10 extension-points
defined per plug-in (based only on plug-ins providing extension-points).

Space Requirements Another question is the manageability of the data with re-
spect to its required disk space. The size of the trace file used to create the
Extension Initialization View is, e.g., 32Mb for Mylyn and 52Kb for eGit and
Trac. Also the trace file used for the Test Suite Modularization View is man-
ageable for all subject systems, comprising 50Mb for Mylyn, 14Mb for eGit, and
12Mb for Trac.

On the other hand, the trace file required for the identification of the Extension
Usage includes trace data from several packages outside the system under test, and
can become large. The trace of Mylyn for all 148 extensions has 6Gb. Likewise,
the trace for all services of eGit has 300Mb. However, the number of packages
included for tracing are a↵ected by the number of extensions or services analyzed.
The size of the file depends on this variable. We argue that a usual usage scenario
for this view involves the inspection of a small number of up to seven extensions
or services. Then the corresponding trace will be substantially smaller. Once this
trace is analyzed the remaining information can be stored within a few megabytes
file (e.g., 6Mb for Mylyn).

3.6.4 RQ3: Accuracy
The main concern with respect to the accuracy of the information displayed in the
views relates to the heuristics used to determine if a class is related to an extension-
point. Answering RQ3: Our heuristics capture the practices of the developers
well, which is why all classifications and derived views have been accurate (i.e. no
false-negative or false-positive occurred). In the following the results are discussed
in more detail.

The Extension Initialization View tells the developer which test method causes
an extension-point to load an extension. For Mylyn, the view shows nine test
methods related to an extension-point defined in Mylyn.

We manually inspected all of those nine test methods, to see if it is apparent
from the test method how it is involved in testing the extension-point. For all,
it was immediately clear that the code tests the extension-point, i.e., no false-
positives occurred. Due to the nature of the algorithm, extension initializations
are never missed, i.e. false-negative do not appear.

The accuracy of the Extension Usage View is mainly influenced by the clas-
sification of the classes to be either visible or invisible for the extension-point. A
classification error might occur, if the extension-point does not provide a base-
class in its XML schema file. When in doubt, the algorithm behaves conservatively
and classifies all types, that are extended by the class of the extension as related.
This means no extension usages are missed, but it leads to a wrong classifica-
tion in case the extension class does not only extend the type declared by the



3.7 DISCUSSION AND FUTURE WORK 71

extension-point, but additional classes (e.g. classes only visible to this plug-in).
Then, methods of these additional classes are added to the extension method set.
This can cause the Extension Usage View to show more methods of an extension
as being used than those that actually occur, and the viewer has to reduce them
manually (i.e. identify the right base class of the extension).

This false classification is reduced, by considering that if the extension-point
is not declared in the plug-in that provides the extension, and a type extended
by the extension is defined within this plug-in, this type cannot be visible to the
extension-point, and can be excluded. Until the extension-point is required to
indicate a type, we cannot eliminate potential misclassification. In Mylyn, all
extension-points provide an XML schema-file. To get an impression for the likeli-
hood of a misclassification we manually inspected all 29 extension classes declared
for an extension-point within Mylyn, i.e. representing the system under test.
None of those would have led to a misclassification. In addition, we inspected 9
extension classes created for extension-points declared outside the subject system
(but in the ecosystem) to see their potential classification error. Of these, only
one class would have caused a misclassification. This class is part of the exten-
sion for the extension-point org.eclipse.ui.handlers. Here plug-in mylyn.tasks.bugs
provides an extension based on the class “NewTaskFromMarkerHandler”. This
class extends class “MarkerViewHandler”23 which extends “AbstractHandler”24.
Our algorithm would identify “MarkerViewHandler” already as a potential exten-
sion class, whereas the base type of the extension is defined as “AbstractHandler”.
This leads to the inclusion of methods defined in “MarkerViewHandler” in the
analysis.

Because the Service Usage does not only rely on static data, but also uses
dynamic data about service registration events, we can determine the runtime
type of each service, and therefore determine which service of a particular service
provider is invoked during service usage. For the Test Suite Modularization View
no heuristics are used.

3.7 Discussion and Future Work
3.7.1 User Study
Our present evaluation is via case studies, aimed at assessing the applicability,
scalability, and accuracy of our approach. With the confidence gained from these
cases, a logical next step is to involve actual users in the evaluation.

First feedback from Eclipsers was obtained via a presentation of our findings
about test suite understanding, as well as the five architectural views, to approx-
imately 70 practitioners during the Eclipse Testing Day.25 The overall responses

23This class is in the package org.eclipse.ui.views.markers
24This class is in the package org.eclipse.core.commands
25
http://wiki.eclipse.org/Eclipse_Testing_Day_2011



72 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.7

were positive, and encouraged us to proceed.
We consider a full user study as beyond the scope of the present paper. How-

ever, to get some initial insight we took the following steps already. In particular,
we asked three developers, who have been participants in the grounded theory
study described in Section 3.3, for their feedback on ETSE. We demonstrated the
tool and outlined the meaning of each architectural view. All three participants
reacted very positively and expressed that the tool gives them a new perspective
on plug-in test suites. The developers found the visualization of the degree of in-
tegration testing of system under test, illustrated by the Extension Initialization
View, very useful.

Two new features emerged during this interviews: First, all developers said
that an additional visualization of the views similar to coverage tools would be
interesting. Second, one developer explained that he thinks a further abstraction
level based on Eclipse features (i.e. sets of plug-ins shipped together) could be
beneficial for illustration of integration with third party systems.

3.7.2 Limitations
One of our current limitations relates to the boundaries of the system under test.
At the moment, we are only partly addressing the integration of the system under
test in its ecosystem. The views mainly focus on the relations within the system
under test. Contributions to the ecosystem, i.e., extensions from the system
under test for extension-points defined outside are addressed. Extensions outside
the scope of the system under test for extension-points within the system under
test are not automatically covered. For example, that would be any extension
defined by a foreign plug-in for a plug-in inside the system under test. In case
the tester is interested in such integrations, those foreign parts of Eclipse must be
included in the system under test.

3.7.3 Recommendations
Standardization Eclipse extensions can be of two types: data or executable. In Ec-
lipse there is no formal way to distinguish them. Furthermore, an extension-point
is not forced to provide an XML schema-file describing the syntactical contract
between creator and contributor. Being stricter in the declaration for extension-
points would not only help ETSE identify the proper extension relations, but also
help Eclipse developers understand the relationships more easily.

Set-Up and Tear-Down While executing a test suite with the Eclipse plug-in test
runner, the framework is only started once. Also plug-ins and extensions are
created on demand and are not automatically stopped after a test execution of
one method. This means that the execution of a test method can change the state
of the system, and therefore possibly change the outcome of following tests. For
example, a test method that creates an extension, might also need to activate the



3.8 RELATED WORK 73

plug-in providing this extension. In the case, the extension would be used also
by a subsequent test method, this test method would not have to activate the
plug-in anymore. We are of the opinion that there is not enough awareness for
the implications of such dependencies between tests. The test runner should allow
users to configure the set-up and tear-down of the execution environment, in this
case Eclipse. We anticipate that such information would be useful to integrate
with ETSE views as well.

3.7.4 Threats to validity
With respect to external validity, the case studies chosen, Mylyn, eGit, and Trac
connector can be considered representative for Eclipse plug-ins. In particular
Mylyn is a complex plug-in, and hence we expect the views to be applicable to
other complex plug-ins as well.

While the extension mechanism is Eclipse-specific, it is essentially a callback
mechanism, which is a common way to achieve extensibility in many systems.
We conjecture that the proposed views are applicable for other systems utilizing
callback mechanisms as well, in particular if they are, like Eclipse, based on OSGi.
Further, the views are also usable for OSGi services, and two of the views can be
used independently from the extension mechanisms or the services.

Concerning repeatability, the subject systems are open source and accessible
by other researchers.

The views have been implemented in ETSE. Since, ETSE is a software system,
and also relies on several other frameworks, such as the BCEL framework, the
implementation might not be free of bugs, and the quality of the system consti-
tutes a threat to internal validity. We took countermeasures against this threat
by testing ETSE by means of an automated test suite, and we manually checked
many of the results the tool delivered by inspecting the code.

3.8 Related Work
A recent survey on the use of dynamic analysis for program understanding pur-
poses is provided by Cornelissen et al. (2009). One of the findings of this survey
is that very few studies exist addressing dynamically reconfigurable systems – a
gap that we try to bridge with our paper.

In the area of test suite analysis and understanding, van Deursen et al. (2002)
proposed a series of JUnit test smells (pointing to hard to understand test cases)
as well as a number of refactorings to remedy them. Later, this work was substan-
tially elaborated by Meszaros (2007) into an extensive book on xUnit patterns.
Van Rompaey et al. (2007) propose a formalization of a series of test smells, as
well as metrics to support their detection. They also propose heuristics to con-
nect a test class to its corresponding class-under-test – which we also use in our
approach. Galli et al. (2004a) present a taxonomy of (Smalltalk) unit tests, in



74 WHAT YOUR PLUG-IN TEST SUITES REALLY TEST: AN INTEGRATION
PERSPECTIVE ON TEST SUITE UNDERSTANDING 3.9

which they distinguish tests based on, for example, the number of test methods
per method-under test, and whether or not exceptions are taken into account.

In order to support the understanding of test suites, Cornelissen et al. (2007)
investigate the automated extraction of sequence diagrams from test executions.
Zaidman et al. (2008) investigate implicit connections between production code
and test code, by analyzing their co-evolution in version repositories. While these
studies provide important starting points, none of them approaches test suite
understanding from an integration or extensibility point of view.

Koochakzadeh and Garousi (2010) present a graph-based test coverage visu-
alization tool, whose usefulness is evaluated by Garousi and Varma (2010). The
tool, which is now part of the CodeCover test coverage tool for Eclipse, allows to
view the test coverage between two artifacts on di↵erent scopes (i.e. test package,
class and method in xUnit). The views of this tool di↵er strongly from our views
as their focus is visualization of purely “traditional” coverage information with
no connection to the plug-in characteristics of systems under test. Further, our
approach also analyzes the static meta data information of the plug-in system to
gain information on potential integration possibilities and their coverage within
the test execution. Visualization of those connections helps also to facilitate com-
prehension of the system under test, and its test suite.

A substantial body of research has been conducted in the area of integration
testing (Binder, 1999; Jorgensen and Erickson, 1994; Pezzè and Young, 2008).
Closest to the Eclipse extension mechanism are test strategies addressing poly-
morphism, such as the all-receiver classes adequacy criterion (Rountev et al.,
2004).

Most integration testing approaches are model-based, and explain how models,
e.g., UML state machines, can be used to derive test cases systematically (Hart-
mann et al., 2000; Reis et al., 2007). In the Eclipse setting, it is not common to
have models of plug-ins and their extension-points available a priori. As we saw,
however, our views can be reverse engineered from static dependency declarations
as well as from run time plug-in interactions. As such, they can help developers
compare actual plug-in interactions with declared dependencies.

The Eclipse plug-in architecture and the related Eclipse IDE are well studied
subject systems in the research community. For example, Wermelinger and Yu
(2008) analyze the evolution of Eclipse plug-ins, and Mens et al. (2008) investigate
whether software evolution metrics are supported within the Eclipse context. Both
studies analyze the evolution of Eclipse, whereas our study performs a static and
dynamic analysis to study extensibility relations between plug-ins.

The grounded theory method originates from the social sciences, and has
nowadays gained popularity in the software engineering research field (Dagenais
and Robillard, 2010; Hermans et al., 2011; Rigby and Storey, 2011). Also for our
study, grounded theory was beneficial as it is suitable, in particular, for explorat-
ive, human-centered research areas.



3.9 CONCLUDING REMARKS 75

3.9 Concluding Remarks
In this paper, we have investigated the task of understanding test suites for plug-
in-based architectures, and proposed five architectural views to facilitate compre-
hension. In particular, the following are our key contributions:

1. An investigation of the task of “understanding plug-in-based test suites” by
means of interviews with 25 professional;

2. Five architectural views that can be used to understand test suites for plug-
in-based systems from an extensibility perspective for various extension
mechanisms;

3. The Eclipse Plug-in Test Suite Exploration (ETSE) tool, which recovers
the proposed views from existing systems by means of static and dynamic
analysis, and which can be integrated in the Eclipse IDE; and

4. An empirical study of the use of these views in Mylyn, eGit, and a Mylyn
connector.

In our future work, we will first of all apply the proposed approach to more
plug-in-based architectures in collaboration with Eclipse developers. Within this
collaboration, we are planning to conduct a thorough user study, with profession-
als, to investigate the usefulness of the views during typical test suite comprehen-
sion and/or maintenance tasks. Furthermore, we will investigate to what extent
the views can be used as a base to derive adequacy criteria used to prevent failures
reported in the actual usage of concrete plug-in-based systems such as Eclipse.
Finally, we plan to enhance this base with models representing the shared proper-
ties of plug-in-based systems. Together, from the models a new test strategy and
approach for plug-in-based systems that provide dynamic reconfigurations should
emerge.





Chapter4
Measuring Test Case Similarity to
Support Test Suite Understanding

Abstract
In order to support test suite understanding, we investigate whether we can auto-
matically derive relations between test cases.1 In particular, we search for trace-
based similarities between (high-level) end-to-end tests on the one hand and fine
grained unit tests on the other. Our approach uses the shared word count metric
to determine similarity. We evaluate our approach in two case studies and show
which relations between end-to-end and unit tests are found by our approach, and
how this information can be used to support test suite understanding.

4.1 Introduction
Modern software development practice dictates early and frequent (automated)
testing. While automated test suites are helpful from a (continuous) integra-
tion and regression testing perspective, they lead to a substantial amount of test
code (Zaidman et al., 2011). Like production code, test code needs to be main-
tained, understood, and adjusted upon changes to production code or require-
ments (Greiler et al., 2010; Meszaros, 2007; Van Rompaey et al., 2007).

In light of the necessity of understanding and maintaining test suites, which
can become very costly due to the large amounts of test code, it is our stance
that tool support can reduce the burden put on the software and test engineers.

1This chapter is published in the proceedings of the 2012 International Conference on Ob-
jects, Models, Components, Patterns (TOOLS 2012). The authors of this publication are Greiler,
van Deursen, and Zaidman.

77



78 MEASURING TEST CASE SIMILARITY TO SUPPORT TEST SUITE
UNDERSTANDING 4.1

The V-model from Figure 4.1 shows that di↵erent levels of tests validate di↵erent
types of software artifacts, with each level contributing to the large amount of
test code. Figure 4.1 also shows that, ideally, requirements can be traced all the
way to source code, making it easier to perform impact analysis, i.e., determining
what the impact of a changing requirement is on the source code. The right side
of the V-model however, the test side, does not have similar tool support.

In this paper we propose to support engineers by helping them to understand
relationships between di↵erent types of test suites. As an example, an automated
test suite can include “end-to-end” tests, exercising an application from the user-
interface down to the database, covering functionality that is meaningful to the
end user.2 The test suite will typically also include dedicated unit tests, aimed at
exercising a very specific piece of behavior of a particular class. Suppose now a
requirement changes, entailing a modification to the end-to-end test, which unit
tests should the software engineer change as well? And vice-versa, if a unit test
is changed, should this be reflected in an end-to-end test as well?

Requirements End-to-end tests

... ...

Design Integration tests

Code Unit tests

Traceability

Te
st 

Sim
ila

rit
y

Figure 4.1: The V-model for testing

Our goal is to develop an automated technique for establishing relations between
test cases, in order to assist developers in their (test suite) maintenance activities.
To reach this goal, we employ dynamic analysis (Cornelissen et al., 2009). We
collect call traces from test executions, and use these to compute a similarity
value based on the shared word count metric. The resulting technique, which
we call test connection mining, can be used to establish connections between test
cases at di↵erent levels. An implementation of our technique is available via a
framework called the Test Similarity Correlator.

We evaluate the approach in two case studies, by elaborating on the useful-
ness of the approach to improve the understanding. We analyze how measuring
similarity based test relations can help to (1) find relevant tests by showing test
relationships, (2) understand the functionality of a test by describing high-level
test cases with related unit test cases and (3) reveal blank spots in the investigated
unit test suites.

This paper is structured as follows: in Section 4.2, we discuss our test execution
tracing approach. In Section 4.3, we describe the similarity metrics we use to

2We deliberately did not use the term acceptance test, as it is commonly associated with
tests executed by the customers/users.



4.2 TRACING AND TRACE REDUCTION 79

compare traces. Subsequently, we describe our approach and its implementation
(Section 4.3) as well as the set-up of our case studies (Section 4.4). The two case
studies are covered in Sections 4.5 and 4.6. We conclude with discussion, related
work, and a summary of our contributions in Sections 4.7–4.9.

4.2 Tracing and Trace Reduction
Test connection mining first of all requires obtaining execution traces with relevant
information of manageable size. This section describes the specific execution trace
we use and the trace reduction techniques we apply.

4.2.1 Tracing Test Executions
Before the test run, the production and test code are instrumented. Subsequently,
during the test run we obtain an execution trace comprised of various types of
events: (1) test execution events represent the execution of a test method, (2)
set-up and tear-down events mark the execution of a method which is either used
for test set-up or tear-down, (3) method execution events signalling the execution
of a public method within the code under test and (4) exception thrown events
indicating that an exception has been thrown.

For the similarity measurements it is important to be able to distinguish
between production and test code. Otherwise, executions of test helper meth-
ods will appear in the trace and render the test cases as less related. Due to the
common practice to put the test code in a separate package (e.g., test.jpacman),
we simply filter executions of methods belonging to test code out during instru-
mentation. If test and production code are within the same packages, test classes
can be annotated and correctly addressed during instrumentation.

4.2.2 Handling mocks and stubs
When mocks or stubs are used, care has to be taken to correctly trace calls to
mocked classes and map these calls to the corresponding original class.

A first issue is that using mocking frameworks can have the e↵ect that an
automatically created mock-object is not part of the instrumented package. For
example, by using the JMock3 library interfaces and classes defined to be mocked
are automatically wrapped in a proxy class which is located in the same package
as the class directing the mocking operation, which will usually be the test class
or a helper class within the test package. Because we do not trace executions of
methods defined in the test package, these classes have to be addressed specifically.
We do so by keeping track of a list of mocked types.

Mocking also plays a role for tracing the production code, as the mocked and
unmocked classes have to be mapped to allow identifying their similarity. There-

3http://www.jmock.org



80 MEASURING TEST CASE SIMILARITY TO SUPPORT TEST SUITE
UNDERSTANDING 4.2

Listing 4.1: Trace di↵erences with or without mocking

//Execution of method join of the mocked interface Sniper
void TestClass. Proxy1.join()

//Execution of method join of class AuctionSniper implementing Sniper
void AuctionSniper.join()

fore, we have to indicate that a method on a mockable object has been invoked.
To that end, we check whether the runtime type of the target is contained in the
list of mocked classes. If yes, we further investigate whether the method intercep-
ted is part of the mockable type, since a class implementing a mockable interface
can have additional methods. Therefore, we derive recursively, via reflection, the
set of methods belonging to this type including all methods defined by it and its
(potential) super-types. Only if the method intercepted is an actual method of
the mockable type, we discovered a mockery execution. As such, we add it to the
trace and mark it with a mockery mark.

Finally, we need to neutralize those mock and stub calls. As illustrated in
Listing 4.1, an execution of a method of a mocked type can be traced as the
execution of an inner class within the (test) class defining the mock operation. As
this di↵ers from the trace events left behind by the execution of a method of the
actual type, we render them as similar, by using the mockery marks set during
tracing. Note also the actual type might di↵er from the mocked type by being
the implementation of a type or extending a common type. We inspect the trace
and replace all executions of methods of an actual type, as well as the executions
of the mocked type by their common (super) type. For example, the traces in
Listing 4.1 would be mapped to “void Sniper.join()”.

4.2.3 Trace reduction
Trace reduction techniques are important in order to reduce the size of traces
to improve performance and scalability, and to help reveal the key functionality
of the test case, e.g., by reducing common functionality or noise (Cornelissen
et al., 2008). We adopt the following five reduction techniques before starting our
analysis:

Language based Reduction. The traces are reduced to only public method
executions and do not comprise any private or protected methods. Furthermore,
only the production code is fully traced; for the test code only test method execu-
tion events are traced to be able to separate individual test cases from an entire
test run.

Set-up and Tear-Down Reduction. As set-up and tear-down methods do not
explicitly contribute to the specific focus of a unit test, and are usually shared
by each test case within a test class, all method executions taking place during
set-up or tear-down are removed.

Shared Word Reduction. This trace reduction focuses on helping identify the
core functionality of a test case, by removing trace events that are omnipresent
in almost all test traces (defined by a variable threshold).



4.3 DETERMINING SIMILARITY MEASUREMENTS 81

Complement Reduction. This reduction focuses on reducing the trace size
by removing calls within the trace of interest that are not existing in any of
the test traces to compare to. Although, after such a reduction target traces
will be calculated as more similar to the source trace, the reduction itself does
not influence the information perceived useful for ranking the target traces with
respect to each other.

Unique Set of Calls. This technique reduces all trace events within a trace to
a unique set of events. Because information such as order and position of events
are not preserved this reduction is only useful for similarity measurements that
do not take such information into account.

4.3 Determining Similarity Measurements
The second step involved in test connection mining consists of computing trace
similarities. In particular, we compute the similarity between a source trace te
(e.g., from an end-to-end test) and a target trace tu (e.g., from a unit test).

As similarity metrics we compared (1) shared word count (Weiss et al., 2004),
(2) Levenshtein distance (Stephen, 1994) and (3) pattern matching based on the
Knuth-Morris-Pratt algorithm (Stephen, 1994). From an initial experiment we
observed that all three metrics provided similar results, which is why we continue
with the shared word count in the remainder of this paper.

The shared word count measurement (Weiss et al., 2004) assesses the number
of tracing events that two test execution traces have in common. The similarity
between a source trace and a target trace is calculated as the number of tracing
events comprised in both test traces.

4.3.1 Relevancy support based on occurrence
Some tests are related to other tests, because they test common functionality.
Using this piece of knowledge, we can improve our results, by marking these more
general tests as less important. Vice versa, by giving a test appearing less often a
high impact, results with more specific functionality are ranked higher. We do so
by multiplying the similarity measurement for a specific trace tu with the total
number of test cases it has been compared to, and dividing this by the number
of times the trace appeared as a result. We also use the average similarity of test
case tui to rank similar results. For example, if target test cases tu1 and tu2 have
the same similarity with te, than the test case with the smaller average similarity
among all tej is ranked first.

4.3.2 Implementation
We implemented the various trace reduction techniques and similarity measure-
ments presented in this paper in a Java based framework called Test Similarity



82 MEASURING TEST CASE SIMILARITY TO SUPPORT TEST SUITE
UNDERSTANDING 4.4

Correlator.4 Our tool o↵ers an API to steer customized test similarity measure-
ments, varying in trace reduction, thresholds and similarity calculations.

To instrument the test execution we use the AspectJ5 framework. We o↵er
three di↵erent annotations to facilitate tracing of execution of test-methods, set-
up and tear-down methods. Test Similarity Correlator comprises several aspects,
addressing join points to weave in our tracing advices, including the aspect to
address code generated by the mocking library JMock.

4.4 Set-Up for Case studies
4.4.1 Research Questions
To evaluate the usefulness of test connection mining, we conducted an explorative
study based on two case studies. In these case studies, we aim at answering the
following questions:

RQ1 How do the associations found by test connection mining relate to associ-
ations a human expert would establish?

RQ2 Are the associations found useful for a typical test suite understanding task,
i.e., getting familiar with the test suite of a foreign system?

RQ3 How does mocking influence the similarity measurements?

RQ4 What are the performance characteristics, both in time and in space, of the
analysis conducted?

To answer these questions, we select a subject system that is shipped with
both a functional test suite as well as a unit test suite. We manually compile a
conceptual mapping between unit and functional test cases, and compare these to
the mappings found through test connection mining automatically.

The first case study is used to assess RQ1 and RQ4, whereby in the second
case study we focus on RQ2 and RQ3.

4.4.2 Technique customization
The specific trace reduction configuration (see Section 4.2) we use in the case
studies consists of the following steps.

Before calculating the trace similarity, traces are reduced by using the Set-up
and Tear-Down reduction, followed by the Shared Word, and the Complement
reductions. The order of the reduction is important and influences the ranking of
the results. For example, if all unit test cases call a method “quit()” as part of
their tear down method, but only one unit test actually uses this method during
test execution, the application of first the Shared Word reduction and then the

4
http://swerl.tudelft.nl/bin/view/Main/TestSimilarityCorrelator

5
http://www.eclipse.org/aspectj



4.5 CASE STUDY I: JPACMAN 83

Set-up and Tear-Down reduction would eliminate this call from the trace. The
Shared Word reduction technique can be customized by a threshold influencing
how many traces must comprise a trace event before it is removed.

For similarity measurements based on shared word count, which does not take
the order of events into account, the traces are further reduced to their unique
set of events.

4.5 Case Study I: JPacman
As first subject system we use JPacman,6 a simple game written in Java inspired
by Pacman, used for educational purposes at Delft University of Technology since
2003. Key characteristics of JPacman are listed in Figure 4.2.

JPacman follows the model-view-controller architecture. Each class in the
model package comes with a (JUnit) unit test class, which together comprise
73 unit test cases. The test suite makes use of several test patterns described
by Binder (1999), using state machines, decision tables, and patterns such as
polymorphic server test (reusing superclass test suites at the subclass level). This
results in a line coverage of 90% in the model package, as measured by Cobertura.7

The functional test suite is directly derived from a set of JPacman user scen-
arios written in behavior-driven development8 style. These scenarios are of the
form given in Listening 4.3. There are 14 such scenarios, each of which is trans-
lated into a JUnit test case. The resulting functional test cases exercise around
80% of the user interface code and around 90% of the model code.

4.5.1 Obtaining the Conceptual Mapping
JPacman’s main developer created a conceptual mapping in advance. The key
criterion to identify a relation between an end-to-end test t and a unit test u
was the question whether the behavior of u is important in order to understand
the behavior of t. The conceptual mapping contains both positive incidences

Code size (lines) 4,000
Test code size (lines) 2,000
No of classes 26
No of test classes 16
No of unit tests 73
No of functional tests 14

Figure 4.2: JPacman character-
istics

Given [context]

And [some more context]...

When [event]

Then [outcome]

And [another outcome]...

Figure 4.3: JPacman Test Scen-
arios

6Version 4.4.4, dated October 2011. JPacman can be obtained for research and educational
purposes from its author, 2nd author of this paper.

7
http://cobertura.sourceforge.net/

8
http://dannorth.net/whats-in-a-story/



84 MEASURING TEST CASE SIMILARITY TO SUPPORT TEST SUITE
UNDERSTANDING 4.5

(important connections to be established) and negative ones (unlikely connections
that would be confusing). In most end-to-end (ETE — numbered from ETE01
to ETE14 ) test cases, we had at least 5 positive and 9 negative connections.

While the mapping obtained can be considered a useful baseline, it should be
noted that it is incomplete: it only identifies clearly connected and clearly discon-
nected test pairs. The remaining tests are categorized as undecided. Furthermore,
we tried to be as specific as possible: relations to “infrastructure” unit test cases
relevant to many end-to-end tests were not included.

4.5.2 RQ1: Comparison to Conceptual Mapping
We used a spreadsheet containing 14 ⇥ 73 matrices to study the di↵erences
between the conceptual mapping as well as the ones obtained through our auto-
mated analysis. Due to size restrictions, we can not show all results of the meas-
urements9. Besides saving space, showing the top 5 results is also realistic from
a practical point of view, because in practice a user of the tool would also look
primarily at the highest ranked results. In Table 4.1 we show for each end-to-
end test the 5 most similar unit tests based on the shared word count metric.
A ranking is indicated as optimal in case it is marked as highly related in the
conceptual mapping and it is ranked high (i.e. top match). Incidences marked as
related by the expert which are high ranked are evaluated as good. Results of the
category undecided are subjected to additional manual analysis: the results are
indicated as ok only if the relation is strong enough to be justified, and labeled as
nok otherwise. Unrelated results ranked highly, as well as (highly) related results
ranked low, are also evaluated as nok.

The overall impression is that the automated analysis provides a useful ap-
proximation of the manually obtained mapping. Looking at all the results for
each end-to-end test case, we found that:

For all but one end-to-end test (i.e. ETE02 ), the top match is ranked as
the first or second automatically calculated result.

Within the top 10 results only one unit test case marked unrelated is listed.

All remaining results ranked within the top 10 (i.e. from the undecided cat-
egory) are su�ciently related to the end-to-end tests to justify investigation.

No relations are missing as all test cases marked as relevant by the expert
have been identified as related. Thereby, 80% of all test cases marked as
related have been ranked within the upper half of the results showing sim-
ilarity and within the top 30% of overall results.

9The complete results are available at http://swerl.tudelft.nl/twiki/pub/

Main/TestSimilarityCorrelator/similarityResults.zip



4.5 CASE STUDY I: JPACMAN 85

Test Case (no.) match Test Case (no.) match Test Case (no.) match
1 Move to empty cell & undo 2 Move beyond border 3 Move to wall
MovePlayer(23) optimal FoodMove(44) ok DxDyImpossMove(15) optimal
UndoEmptyMove(17) optimal FoodMoveUndo(39) ok SimpleMove(22) good
UndoDxDy(18) optimal UndoFoodMove(19) ok DieAndUndo(26) optimal
UndoFoodMove(19) ok PlayerWins(24) ok DieAndRestart(25) optimal
Apply(38) optimal wonSneakPaths(35) ok MovePlayer(23) good
4 Eat food & undo 5 Win and restart 6 Get killed and restart
FoodMoveUndo(39) optimal SetUp(12) ok DieAndRestart(25) optimal
UndoFoodMove(19) optimal PlayerWins (24) optimal PlayerWins(24) ok
UndoFood(47) optimal FoodMoveUndo(39) good wonSneakPaths(35) ok
FoodMove(44) optimal FoodMove(44) optimal Updates(37) ok
MovePlayer(23) good DxDyPossibleMove(14) ok UndoFoodMove(19) ok
7 Monster to empty cell 8 Monster beyond border 9 Monster to wall
UndoMonsterMove(16) optimal Wall(70) optimal EmptyCell(69) optimal
MoveMonster(28) optimal MonsterPlayer(73) ok MonsterFood(72) ok
Updates(37) ok MonsterFood(72) ok MonsterPlayer(73) ok
OutOfBorder(68) ok EmptyCell(69) optimal Wall(70) optimal
FoodMove(71) ok MonsterKillsPlayer(27) ok MonsterKillsPlayer(27) ok
10 Monster to food 11 Monster to player 12 Suspend
MoveMonster(28) optimal MonsterPlayer(73) optimal SuspendRestart(29) optimal
Updates(37) ok Wall(70) ok Start(21) good
Apply(66) good MonsterFood(72) ok SneakPlaying(33) ok
FoodMoveUndo(67) optimal EmptyCell(69) good SuspendUndo(30) optimal
FoodMove(71) ok MonsterKillsPlayer(27) optimal SneakHalted(36) good
13 Die and Undo 14 Smoke
DieAndUndo(26) optimal SetUp(12) good
MovePlayer(23) good PlayerWins(24) optimal
wonSneakPaths(35) ok FoodMoveUndo(39) ok
SimpleMove(22) ok wonSneakPaths(35) ok
DieAndRestart(25) optimal FoodMove(44) ok

Table 4.1: Top 5 ranked unit tests per end-to-end test for JPacman

92% of all tests marked as unrelated correctly map to no similarity by the
measurements. The remaining unrelated tests revealed weak connections
and have been ranked in the bottom half of the results, except for one
test (14).

Correct Identifications. Top matches. The top two results of the measure-
ments in most cases also contain the top match for an end-to-end test case. For
example, the end-to-end test involving a keyboard event to move the player to the
right and then undoing that move (ETE01 ), is connected to a unit test actually
moving the player. As another example, ETE03 attempts to move through a wall
(which is impossible), and is connected to a unit test addressing the correct po-
sitioning of the Pacman’s mouth after attempting an impossible move. As dying
is a type of an impossible state, connections to dying are also correct.

Moving Monsters vs. Players. Some groups of test cases are moving players
(i.e. 44, 45, 46), whereas other tests (72, 73, 74) are moving monsters. In the con-



86 MEASURING TEST CASE SIMILARITY TO SUPPORT TEST SUITE
UNDERSTANDING 4.5

ceptual mapping, tests moving players are related to ETE tests 1-6, and marked
as unrelated for ETE tests 7-11, whereby tests moving players are related the
opposite way. These relations respectively non-relations are correctly identified
by the measurements, except for test case 74, which we will outline below.

Surprises. Moving Monsters. According to the expert, a group of tests (72,
73, 74) all move monsters, and should lead to similar rankings. Surprisingly, one
test (74) performs di↵erently from the rest, and also di↵ers from the conceptual
mapping. After investigation, it became apparent that this test is not as focused
as expected and desired by the expert. The test even concludes with a method
which is never followed by an assertion statement. This investigation revealed a
clear “test smell” and pointed the expert to a place in need of a refactoring.

Sneak paths. A surprising connection is provided for the “monster to player”
test (ETE11 ), which is connected to “wonSneakPaths” (35). This relates to unit
tests aimed at testing for sneak paths in state machines, following Binder’s test
approach for state machines (Binder, 1999). A sneak path is an illegal transition,
and the JPacman sneak path test cases verify that illegal hstate, eventi pairs do
not lead to a state change. To do so, the test case brings the application in the
desired state (e.g., Playing, or Died), and then attempts to trigger a state change.

The process of bringing the application in a given state, however, may bear
similarity with other test cases. For example in unit test 35, the player first
wins. Then multiple steps, such as the player getting caught by a monster or the
player running into a monster, are triggered which should not change the state
from “won” to “lost” anymore. As this triggers the player to die or being killed,
this sneak path test case shows up as being related not only to end-to-end tests
triggering winning situations. A better separation of set-up logic (bringing the
application in the right state) and executing the method-under-test would help
reveal more focused associations.

Deviations. Moving beyond border. ETE02 is the only test which does not map
to a top match within the first 5 results. The first top matches are found from
rank 7 onwards. Reasons for this behavior are that ETE02 is one of the smallest
end-to-end tests involving a move, and that testing the behavior for “beyond
border” covers branches that only lead to di↵erent data, not di↵erent calls made.
All 5 high ranked results correctly involve doing a move. After investigation of
the results, the expert reports that the unit test cases indicated as related in the
conceptual mapping do a bit more than only a move (e.g. an undo operation),
which is why our approach gives these unit tests a lower rank.

Move to Wall. ETE03 contains the only unrelated connection within the top
10 results: on rank 9 is the “possible move” test. On the other hand, counterpart
test “impossible move” is a top match.

Disparate test sizes. The main deviations (tests marked as unrelated being
ranked higher than tests marked as related) are due to extreme size di↵erences in
unit tests. The expert easily relates narrow focused tests, whereby the automatic
approach, by design of the shared word count, gives preference to broader tests



4.6 CASE STUDY II: AUCTION SNIPER 87

(which share more events). A prime example is the “wonSneakPaths” test, which
is related to many end-to-end tests as it triggers a broad range of functionality.
The more equal the amount of functionality tested by the unit test cases is, the
better the results revealed by the automatic approach.

Additional Lessons Learned. API violations. The smoke test (ETE14 ) con-
sists of a series of events applied to JPacman. As such, it is fairly heterogeneous,
doing many di↵erent things. This makes it hard to come up with a reasonable
positive mapping to unit tests. On the other hand, some unit test cases are not
relevant to any end-to-end test, including the “smoke test”. As an example, tests
57, 58 and 59 deal with using the API in a wrong way, which should generate an
appropriate exception. Seeing that these test cases are not related to the smoke
test gives confidence that such violations are not possible at a higher level.

Human vs. automated mapping. Fine-grained deviations between tests, like
state and specific object instantiations, have been used by the expert to relate
tests to each other. For example, for the expert the determining events for re-
lating unit test cases involving moving to end-to-end tests have been the actual
actors (objects). The automated approach is able to di↵erentiate similar to an
expert between objects. On the other hand, the importance of states for human
mappings is not equally reflected by the automated approach as it assigns every
event the same importance. Identifying and prioritizing states before the simil-
arity calculation is performed could improve the approximation to the “human”
conceptual mapping. As we will see in the second case study, if tests are small and
focused, the impact of state changes reflects well in the similarity measurements.

4.5.3 RQ4: Performance Characteristics
Since JPacman is the larger case study, we will answer RQ4 here. The traces
obtained for both case studies are relatively small: the smallest one is 1kb and
comprises 2 trace events, the largest being 62Kb and 700 trace events (after apply-
ing trace reduction). Similarity calculations within this dimension are computed
within 10 seconds for the whole test suite. Even the results for the smoke test of
JPacman, comprising approximately 60,000 trace events (4Mb) before reduction,
are almost instantly ready after applying trace reduction techniques.

4.6 Case Study II: Auction Sniper
The second case study revolves around a system developed in strict test-driven
development (TDD) manner called Auction Sniper. Its test suite also makes heavy
use of mocking techniques in order to isolate unit tests. In contrast to the first
case study, where we compare the test relations with a conceptual mapping of an
expert, in this case study we investigate the usefulness of the technique to help
an outsider understand test relations (RQ2). In addition, we investigate how our
technique can cope with the influence of mocking techniques (RQ3).



88 MEASURING TEST CASE SIMILARITY TO SUPPORT TEST SUITE
UNDERSTANDING 4.6

Auction Sniper is an application which allows to automatically bid in auc-
tions. Auction Sniper watches di↵erent auctions and increases the bid in case a
higher bid of another bidder arrived until the auction closes or a certain limit has
been reached. This system is used as an example in the book “Growing Object-
Oriented Software, Guided by Tests” by Freeman and Pryce (2009) to describe
TDD techniques. The software and the related tests are explained in detail in
this book and are publicly available10. The system comprises approximately 2,000
lines of code. The test suite has 1,240 lines of code, which constitute 37 unit tests,
6 end-to-end tests and 2 integration tests.

4.6.1 Obtaining an Initial Understanding
We analyzed the book and derived an initial understanding of the relations between
end-to-end tests and unit tests. The authors always start with an end-to-end test,
which kick-starts each development circle for a new functionality, whereby the au-
thors explain each end-to-end test “should have just enough new requirements to
force a manageable increase in functionality” Freeman and Pryce (2009). Then,
the sca↵old implementation of the new functionality follows. Prior to implement-
ation of detailed functionality, the authors develop and explain the necessary unit
tests.

Based on this iterative development, we map each unit test case developed
within the cycle of an end-to-end (ETE) test as related to this ETE test. We
refine this first mapping by identifying the di↵erences of the ETE test cases based
on their code. We mapped some unit tests not covered in the book based on
their name. In the following we summarize the functionality of the six ETE
tests. All unit test case names are given in Table 4.4 which can be helpful during
comprehension of the presented results.

The end-to-end tests. ETE tests 01 to 06 are actually enhancements of each
other, involving a lot of common functionality. The main steps are: 1. An auction
sells an item, 2. An auction sniper joins this auction. 3. Then, the auction closes,
4. Finally, the auction sniper shows the outcome of an auction.

In addition, test cases 02 to 05 place actual bids. Only test case 06 deviates
from the rest, as it does not close the auction and sends an invalid message.
Another main di↵erence between the test cases is the state in which the sniper is
when the auction closes. In ETE01 the sniper is in the state “joining” when the
auction closes, which results in a lost auction. In ETE02 the sniper makes a bid,
but loses in the “bidding” state. In ETE03 the sniper makes a higher bid, and
wins in the “winning” state. ETE04 simply tests that a sniper can bid on two
items. The functionality of ETE03 and ETE04 is so similar that we will treat
them as one test subsequently. In ETE05 the sniper is already in “losing” state
before the auction closes, because of a stop price. ETE06 tests failure reporting.
The test sends an invalid message to the auction and causes the application to

10
https://github.com/sf105/goos-code



4.6 CASE STUDY II: AUCTION SNIPER 89

throw and handle an error, but leaves the auction unclosed.

4.6.2 RQ2: Suitability of Measurements for Understanding Test Relations
After measuring the similarity of the tests, we investigate each unit test via code
inspection, and assess the ranking and the mapping, which results in the final
conceptual mapping illustrated in Table 4.4. Based on this detailed investigation
we finally assess the rankings of the similarity measurements. Below we outline
correct identifications, surprises and deviations of the measurements with our
initial understanding by sketching groups of unit tests. We will see that the
automatic mapping reflects the final mapping derived after in-depth investigation
very accurately, and is thus useful for supporting an outsider in understanding
the test suite and its relations. The rankings and assessments for the best 5
results are illustrated in Table 4.2. For test case ETE06 we present the top 10
results to illustrate the e↵ect of the relevancy support (see Table 4.3). A ranking
is indicated as optimal only in case it is highly related and ranked within the
top first results. Otherwise, results highly related, or results related are indicated
as okay (i.e., ok) in case they are within the first 5 results. On the other hand,
in case of a related result, which is not highly related, but is ranked before the
highly related ones, it is marked as not okay (i.e., nok).

Correct Identifications. Report Close of Auction. Unit test cases 02, 08,
and 09 revolve around reporting the closing of an auction, and are thus indeed
related to all ETE tests except to ETE06. Nevertheless, each of them provokes a
di↵erent state of the sniper when the auction closed event takes place. Therefore,
the mapping should be the strongest for ETE01 with test 02, ETE02 with test
08, ETE3/04 with test 11, and ETE05 with test 09. The measurements for these
relations accurately reflect those subtle di↵erences.

Notifies Bid Details. Tests 33 and 34 are related to all of the ETE tests, except
for ETE01, which does not make a bid. As ETE02 exclusively focuses on bidding,
the relation is correctly identified as the strongest for this test. For other tests
they appear on ranks 6 and 7.

Mapping per Focus. Test case 03 which only bids correctly achieves the highest
rank for test ETE02. Test case 10, related to winning an auction, maps to
ETE03/04. Tests 05, 06 and 09, which address losing before the auction is closed
are also correctly identified as highest-ranking results for ETE05. Test cases 35-
37, and 12-15 are testing the reporting of a failing auction. They are correctly
ranked as highly related to ETE06. ETE06 is a good example to demonstrate the
impact of the relevancy support based on occurrence, described in Section 4.3.1.
Test cases 33 and 34 share more steps with ETE06 than for example test cases
35 and 37. Both achieve just a similarity ranking of 0.2. Nevertheless, tests 35
and 37 reflect much stronger the focus of ETE06. Because 35 and 37 are never
indicated as related to any other ETE test, the relevancy support pushes them
to the top results. The new ranking of, for example test 35, is calculated as its



90 MEASURING TEST CASE SIMILARITY TO SUPPORT TEST SUITE
UNDERSTANDING 4.6

Listing 4.2: Test case: isWonWhenAuctionClosesWhileWinning

@Test public void
isWonWhenAuctionClosesWhileWinning() {
assertEquals(SniperState.LOST, SniperState.JOINING.whenAuctionClosed());

assertEquals(SniperState.LOST, SniperState.BIDDING.whenAuctionClosed());

assertEquals(SniperState.WON, SniperState.WINNING.whenAuctionClosed()); }

similarity divided by the number of times it has been ranked as a result among
all tests (i.e., 0.2 divided by 1/6).

Surprises. Winning and State Transitions. A surprise was the ranking of test
case 20 “isWonWhenAuctionClosesWhileWinning” within the results of ETE01,
as the name suggests it is rather related to winning (i.e., ETE03/04 ). Inspecting
the code, illustrated in Listing 4.2, reveals that the name is misleading as it tests
di↵erent auction outcomes. Two times the auction is lost, contrary to the name,
and it also triggers the rarely addressed state of ETE01 (i.e., “joining” when the
auction is closed). Test case 18 also triggers the transition between each stage
and therefore should have a low relation to each of the test cases.

Not bidding, bidding and losing. Test cases 05 and 06, contrary to their name
suggestions, do place bids and lose and are therefore also related to other test cases
than ETE06. Actually only test case 32 does not make a bid, which is correctly
mapped to ETE01 and gets low ratings for the other tests. Since test case 06
also reaches the winning state before losing, the indicated relation to ETE03/04
in understandable.

Defects and a Failing Auction. We expected test cases 21, 22 to be related to
ETE06. But, tests 21 and 22 create a di↵erent failure as they put the system in a
faulty state and assert a specific exception to be thrown. Such a behavior is not
triggered in the end-to-end test, and consequently the non-appearance of those
test cases for any ETE is correct.

Deviations. Reporting winning. Test case 11, which reports that an auction
has been won after closing is ranked as the third result for ETE02 even though
this end-to-end test addresses losing. The common events, such as starting an
auction, bidding for an item and closing an auction dominate the ranking.
Additional Lessons Learned. Common functionality. Some functionality is
common to all tests. For example, tests of the class “SniperTablesModelTest”
check the rendering of the user interface. Tests 01, 16, and 17 trigger common
functionality such as adding a sniper and listeners. Such trace events are reduced
and can yield empty test cases. Traces reduced to empty traces are marked as
common functionality in the ranking.

4.6.3 RQ3: Handling Mocking
The test suite of Auction Sniper makes heavy use of the mocking library JMock.
Without explicitly addressing mocked types during the analysis test cases in-



4.7 DISCUSSION 91

ETE 01 ETE 02
test sim avg match test sim avg match

02 1.20 1.73 optimal 03 0.55 1.95 optimal
09 0.67 2.50 ok 08 0.55 2.88 optimal
08 0.67 2.88 ok 11 0.45 3.15 nok
11 0.67 3.15 ok 33 0.44 1.85 ok
20 0.50 0.61 ok 34 0.44 1.85 ok

ETE 03 & 04 ETE 05
test sim avg match test sim avg match

11 0.64 3.15 optimal 05 0.55 1.95 optimal
06 0.55 2.13 ok 06 0.55 2.13 optimal
08 0.45 2.88 ok 09 0.55 2.50 optimal
10 0.44 1.57 ok 08 0.45 2.88 ok
15 0.44 1.77 ok 11 0.45 3.15 ok

Table 4.2: Top 5 similarity rankings for ETE01 to ETE05

volving mocked classes are ranked very low or as unrelated even though they
are highly related. For example, without the mockery aspect test case 35 is not
linked to test ETE06 as the runtime types di↵er. By addressing mockery classes
as described in Section 4.2.2 we can correctly identify test relations.

4.7 Discussion
Lessons learned and limitations. Separation of Set-up and Tear-down. Con-
sistent usage of set-up and tear-down methods improves the similarity results, as
it helps in revealing the core functionality and focus of test cases. Test suites
which a priori do not use set-up and tear-down methods to structure their test
might yield less accurate results.

Performance. The performance of the approach is an important criterion es-
pecially if the size and complexity of the system under study increases. During
our two case studies, we experienced no performance issues with the systems un-

ETE 06
test sim avg match test sims avg match
12 0.50 1.59 optimal 13 1.20 0.20 optimal
15 0.50 1.77 optimal 35 1.20 0.20 optimal
14 0.40 1.22 optimal 36 1.20 0.20 optimal
33 0.40 1.85 ok 37 0.60 0.10 optimal
34 0.40 1.85 ok 12 0.60 1.59 optimal
03 0.40 1.95 ok 15 0.60 1.77 optimal
05 0.40 1.95 ok 14 0.48 1.22 optimal
06 0.40 2.13 ok 33 0.48 1.85 ok
10 0.30 1.57 nok 34 0.48 1.85 ok
08 0.30 2.88 nok 03 0.48 1.95 ok

Table 4.3: Similarity rankings for ETE06 with and without support



92 MEASURING TEST CASE SIMILARITY TO SUPPORT TEST SUITE
UNDERSTANDING 4.7

Test Case Name Test Case Relation
sniperJoinsAuctionUntilAuctionCloses – ETE01
notifiesAuctionClosedWhenCloseMessageReceived ⌘ 32 hi. rel.
reportsLostWhenAuctionClosesImmediately ⌘ 02 hi. rel.
isWonWhenAuctionClosesWhileWinning ⌘ 20 related
reportAuctionClosesX ⌘ 08, 09, 11 related
sniperMakesAHigherBidButLoses – ETE02
reportsLostIfAuctionClosesWhenBidding ⌘ 08 hi. rel.
bidsHigherAndReportsBiddingWhenNewPriceArrives ⌘ 03 hi. rel.
doesNotBidAndReportsLosingIfSubsequentPriceIsAboveStopPrice ⌘ 05 related
doesNotBidAndReportsLosingIfPriceAfterWinningIsAboveStopPrice ⌘ 06 related
reportAuctionClosesX ⇡ 09, 11 related
sniperWinsAnAuctionByBiddingHigher – ETE03 & sniperBidsForMultipleItems – ETE04
reportsWonIfAuctionClosesWhenWinning ⌘ 11 hi. rel.
reportsIsWinningWhenCurrentPriceComesFromSniper ⌘ 10 hi. rel.
doesNotBidAndReportsLosingIfPriceAfterWinningIsAboveStopPrice ⌘ 06 related
reportAuctionClosesX ⌘ 08, 09 related
sniperLosesAnAuctionWhenThePriceIsTooHigh – ETE05
reportsLostIfAuctionClosesWhenLosing ⌘ 09 hi. rel.
doesNotBidAndReportsLosingIfSubsequentPriceIsAboveStopPrice ⌘ 05 hi. rel.
doesNotBidAndReportsLosingIfPriceAfterWinningIsAboveStopPrice ⌘ 06 hi. rel.
doesNotBidAndReportsLosingIfFirstPriceIsAboveStopPrice ⌘ 04 hi. rel.
continuesToBeLosingOnceStopPriceHasBeenReached ⌘ 07 hi. rel.
(reportAuctionClosesX) ⌘ 08, 11 related
sniperReportsInvalidAuctionMessageAndStopsRespondingToEvents – ETE06
notifiesAuctionFailedWhenBadMessageReceived ⌘ 35 hi. rel.
notifiesAuctionFailedWhenEventTypeMissing ⌘ 36 hi. rel.
writesMessageTranslationFailureToLog ⌘ 37 hi. rel.
reportsFailedIfAuctionFailsWhenBidding ⌘ 12 hi. rel.
reportsFailedIfAuctionFailsImmediately ⌘ 13 hi. rel.
reportsFailedIfAuctionFailsWhenLosing ⌘ 14 hi. rel.
reportsFailedIfAuctionFailsWhenWinning ⌘ 15 hi. rel.
ETE 01 – 06
transitionsBetweenStates ⌘ 18 related
ETE 02 – 06
bidsHigherAndReportsBiddingWhenNewPriceArrives ⌘ 03 related
ETE 02 - 05
notifiesBidDetailsWhenCurrentPriceMsgReceivedFromOtherBidder ⌘ 33 related
notifiesBidDetailsWhenCurrentPriceMsgReceivedFromSniper ⌘ 34 related
Common functionality and UI
UI related tests (e.g. test of class SniperTablesModelTest) ⌘ 23� 31 related
Listeners and common states ⌘ 01, 16, 17 related
Functionality not addressed by any ETE
defectIfAuctionClosesWhenWon ⌘ 21 unrel.
defectIfAuctionClosesWhenLost ⌘ 22 unrel.

Table 4.4: Final conceptual mapping of end-to-end tests to unit tests. (Abbreviation
hi. rel. stands for highly related and unrel. for unrelated.)

der study. For larger systems further trace reduction techniques might become
necessary (Cornelissen et al., 2008). On the other hand, performance depends
more on the size of the traces (i.e., amount of functionality covered by a test),
than on the number of tests. Test case size is independent of the complexity and



4.9 RELATED WORK 93

size of the systems.

Future work. Assertions. At this stage, our technique does not address the
meaning of assertions. As future work, we would like to investigate how the
meaning of assertions can influence the ranking of a test case.

Test suite quality inspection. The discovered relations do not only help to see
similarity of test cases, they also help to assess the quality of the test suite and
discover areas for improvement, e.g., identifying unit test cases that do too much,
or identifying behavior which is not addressed by any end-to-end test.

User study. We aim to further investigate the usefulness of our tool through
a user study that allows actual developers and testers to work with it.

Threats to validity. Concerning external validity, our case studies address
relatively small Java systems. Scalability to larger case studies is a key concern
that we aim to address in our future work, making use of case studies from the
Eclipse plug-in domain we used in earlier studies (Mylyn, EGit) (Greiler et al.,
2010).

With respect to internal validity, the main threat consists of the manually
obtained conceptual mapping. Creating such a mapping is inherently subjective,
as illustrated by the process we applied to the Auction Sniper case study.

In order to reduce threats to reliability and to improve repeatability, both our
tool and the systems under study are available to other researchers.

4.8 Related Work
An initial catalogue of test smells negatively a↵ecting understanding was presen-
ted by van Deursen et al. (2002), together with a set of corresponding refactorings.
Later, a thorough treatment of the topic of refactoring test code was provided
by Meszaros (2007). Van Rompaey et al. (2007) continued this line of work by
studying automated analysis of these smells.

Tools for assisting in the understanding of test suites have been proposed by
Cornelissen et al. (2007), who present a visualization of test suites as sequence dia-
grams. Greiler et al. (2010) propose higher level visualizations, aimed at assisting
developers in seeing plug-in interactions addressed by their test suites.

Galli et al. (2004b) have developed a tool to order broken unit tests. It is
their aim to create a hierarchical relation between broken unit tests, so that the
most specific unit test that fails can be inspected first. In essence, their technique
allows to steer and optimize the debugging process.

Rothermel and Harrold (1998) discuss safe regression testing techniques; re-
gression test selection techniques try to find those tests that are directly respons-
ible for testing the changed parts of a program and subsequently only run these
tests. Hurdugaci and Zaidman (2012) operationalize this in the IDE for unit tests.

Yoo et al. (2009) cluster test cases based on their similarity to support experts
in test case prioritisation, which outperforms coverage-based prioritisation.



94 MEASURING TEST CASE SIMILARITY TO SUPPORT TEST SUITE
UNDERSTANDING 4.9

4.9 Conclusion
In this paper we showed how a combination of dynamic analysis and the shared
word count metric can be used to establish relations between end-to-end and unit
tests in order to assist developers in their (test suite) maintenance activities.

We evaluated our test connection mining techniques in two case studies, by
elaborating the usefulness of the approach to improve understanding. We saw
that after using the proposed trace reduction techniques our approach produces
accurate test mappings, which can help to 1) identify relevant tests, 2) understand
the functionality of a test by describing high-level test cases with related unit test
cases and 3) reveal blank spots in the investigated unit test suites.

Contributions. The contributions of this paper are 1) tracing and trace reduc-
tion techniques tailored for handling test code, including test specific events such
as set-up, tear-down and mocking 2) an assessment of the usefulness of the rank-
ings based on two case studies, 3) the development of a Test Similarity Correlator,
a framework for mining test connections.



Chapter5
Automated Detection of Test
Fixture Strategies and Smells

Abstract
Designing automated tests is a challenging task.1 One important concern is how
to design test fixtures, i.e. code that initializes and configures the system under
test so that it is in an appropriate state for running particular automated tests.
Test designers may have to choose between writing in-line fixture code for each
test or refactor fixture code so that it can be reused for other tests. Deciding on
which approach to use is a balancing act, often trading o↵ maintenance overhead
with slow test execution. Additionally, over time, test code quality can erode and
test smells can develop, such as the occurrence of overly general fixtures, obscure
in-line code and dead fields. In this paper, we show that test smells related to fix-
ture set-up occur in industrial projects. We present a static analysis technique to
identify fixture related test smells. We implemented this test analysis technique in
a tool, called TestHound, which provides reports on test smells and recommend-
ations for refactoring the smelly test code. We evaluate the tool through three
industrial case studies and show that developers find that the tool helps them to
understand, reflect on and adjust test code.

1This chapter appeared in the proceedings of the 2013 International Conference on Software
Testing, Verification and Validation (ICST 2013). The authors of this publication are Greiler,
van Deursen, and Storey.

95



96 AUTOMATED DETECTION OF TEST FIXTURE STRATEGIES AND
SMELLS 5.1

5.1 Introduction
Modern software development practice dictates early and frequent (automated)
testing. While automated test suites written by developers are helpful from a (con-
tinuous) integration and regression testing perspective, they lead to a substantial
amount of test code. Like production code, test code needs to be maintained,
understood, and adjusted, which can become very costly. The long term success
of automated testing is highly influenced by the maintainability of the test code
(Meszaros, 2007). To support easier maintainability of a system, test methods
should be clearly structured, well named and small in size (Freeman and Pryce,
2009). The duplication of code across test methods should be avoided.

One important part of a test is the code that initializes the system under test
(SUT), sets up all dependencies and puts the SUT in the right state to fulfill all
preconditions needed to exercise the test. In line with Meszaros (2007), we refer
to this part of a test as the test fixture. Developers can adopt several strategies
for structuring their fixture code. The most straightforward option is to place
the setup code directly in the test method, which we refer to as an in-line setup.
A positive aspect of an in-line setup is the proximity of the setup code to the
test itself. However, when several test methods require the same fixture, an in-
line setup can lead to code duplication and high maintenance costs (van Deursen
et al., 2001). Also, configuring the SUT within the test method might hide the
main purpose of the test and result in an obscure test (Meszaros, 2007).

An alternative approach is to place the setup code in helper methods that can
be called by several test methods, which we refer to as a delegate setup (Meszaros,
2007). With a delegate setup, the developer has to make sure the right methods
are invoked at the right time (e.g. as a first statement in a test method).

In today’s testing frameworks, such as the widely used xUnit family, there is a
dedicated mechanism to manage setup code invocations (Beck, 2002; Gamma and
Beck, 2003). Therefore, helper-methods containing the setup code can be marked
(e.g. using annotations or naming conventions) as specific setup methods, which
we refer to as an implicit setup.2 The advantage of an implicit setup is that the
framework takes care of invoking the setup code at a certain point in time and for
a specific group of tests, but also that the methods are explicitly marked as setup
which helps with code comprehension. Often, implicit setups are invoked either
before each test within a class, or once before all the tests within a class. One
main drawback of this approach is that the tests grouped together (i.e. within
one class) should have similar needs in the test fixture. Otherwise, tests might
only access (small) portions of a broader fixture, which can lead to slow tests and
maintenance overhead.

During the evolution of test code, developers have to make conscious decisions
about how to set up the test fixture and adjust their fixture strategies, otherwise

2For example, in the JUnit frameworks methods can be either named setUp() or marked
with annotations such as @Before or @BeforeClass.



5.2 TEST SMELLS 97

they end up with poor solutions to recurring implementation and design problems
in their test code, so-called test smells (van Deursen et al., 2001). Unfortunately,
until now, no support has been made available to developers during the analysis
and adjustment of test fixtures.

To address this shortcoming, we developed a technique that automatically
analyzes test fixtures to detect fixture-related smells and guides improvement
activities. We implemented this technique in TestHound, a tool for static fixture
analysis. We evaluate our technique in a mixed methods research approach. First,
we analyzed the test fixtures of three industry-strength software systems. Second,
we evaluated the usefulness of the technique with 13 developers. In the paper,
we show that fixture-related smells exist in practice, and that developers find
TestHound helpful during fixture management.

In Section 5.2, we briefly summarize di↵erent test smells related to test fix-
tures. In Section 5.3, our fixture analysis technique is presented, followed by im-
plementation details in Section 5.4. Section 5.5 details our experimental design.
In Section 5.6, the evaluation of our technique is presented, followed by a dis-
cussion in Section 5.7. In Section 5.8, we present related work, and conclude in
Section 5.9.

5.2 Test Smells
In earlier research (Greiler et al., 2012a), we interviewed 25 Java developers on
information needs for test code understanding. We observed that the test struc-
ture is important for developers to navigate and retrieve tests within a code base.
For example, to support easier retrieval of test code, it is a common practice
in Java-based systems to organize tests similar to production code (i.e. class to
test class, package to test package). Although this practice is chosen to facilitate
maintenance, it might lead to groups of tests within one test class that have very
di↵erent requirements on the system under test. This means that each test might
need a di↵erent test fixture that initializes and configures the system under test
and all its dependencies (to fulfill all preconditions of a test). As test code grows
and evolves, this strategy can lead to test smells with respect to the test fixture.

The code smell metaphor has been introduced by Fowler (1999) who describe a
smell as a poor solution to a recurring implementation and design problem. Code
smells are not a problem per se, but they may lead to issues such as understanding
di�culties, ine�cient tests and poor maintainability of a software system. Later,
van Deursen et al. (2001) introduced the term test smells by applying the concepts
of smells to test code. The initial set of test smells has been extended by several
researchers (Meszaros, 2007; Van Rompaey et al., 2006; Neukirchen and Bisanz,
2007). We further extend this set, in particular, with test smells related to test
fixtures. Apart from the General Fixture Smell (introduced by van Deursen et al.
(2001)), we present five new test smells as well as possible refactorings to address
these issues:



98 AUTOMATED DETECTION OF TEST FIXTURE STRATEGIES AND
SMELLS 5.2

General Fixture Smell. The general fixture smell occurs if test classes contain
broad functionality in the implicit setup, and di↵erent tests only access part of the
fixture. Problems caused by a general fixture are two-fold: firstly, the cause-e↵ect
relationship between fixture and the expected outcome is less visible, and tests
are harder to read and understand. This can cause tests to be fragile: a change
that should be unrelated a↵ects tests because too much functionality is covered
in the fixture. Secondly, the test execution performance can deteriorate, and
test execution times may eventually lead to developers avoiding to execute tests.
Refactoring. A general fixture can be refactored by creating a minimal fixture,
which covers only the setup code common for all test methods. Individual setups
can be placed in delegate setups by applying an extract method refactoring. In
the case where the test methods do not share too much setup code, an extract
class refactoring can be applied.

Test Maverick. Based on the general fixture smell, we derived a related smell:
the test maverick smell. A test method is a maverick when the class comprising the
test method contains an implicit setup, but the test method is completely inde-
pendent from the implicit setup procedure. The setup procedure will be executed
before the test method is executed, but it is not needed. Also, understanding
the e↵ect-cause relationship between setup and test method can be hampered.
Discovering that test methods are unrelated from the implicit setup can be time
consuming. Refactoring. Test mavericks can be eliminated by the extract class
refactoring, placing them in their own class.

Dead Fields. The dead field smell occurs when a class or its super classes have
fields that are never used by any test method. Often dead fields are inherited. This
can indicate a non-optimal inheritance structure, or that the super class conflicts
with the single responsibility principle. Also, dead fields within the test class
itself can indicate incomplete or deprecated development activities. Refactoring.
Dead fields associated with the class should be removed. A possible refactoring
for dead fields of the super class are splitting the super class into several classes.

Lack of Cohesion of Test Methods. Cohesion of a class indicates how strongly
related and focused the various responsibilities of a class are (Chidamber and
Kemerer, 1994). Classes with high cohesion facilitate code comprehension and
maintenance. Low cohesive methods are smelly because they aggravate reuse,
maintainability and comprehension (Fowler, 1999; Li and Henry, 1993). The
smell Lack of Cohesion of test methods (LCOTM) occurs if test methods are
grouped together in one test class, but they are not cohesive. Refactoring. To
reduce LCOTM, the extract class refactoring can be applied to split a test class
with too many test responsibilities into di↵erent classes.

Obscure In-Line Setup. Meszaros (2007) introduced the smell obscure test to
refer to a test that is di�cult to understand and thus is not suitable for document-
ation purposes. Based on this smell, we created the obscure in-line setup. An
in-line setup should consist of only the steps and values essential to understand-
ing the test. Essential but irrelevant steps should be encapsulated into helper
methods. An obscure in-line setup covers too much setup functionality within the



5.3 ANALYSIS OF FIXTURE USAGE 99

setup

field

teardown test-helpertest-method

method

test class has has 

used by 
variable

declares 

is super class 

initialized by depends on 

Figure 5.1: Meta-model Test Fixture Analysis

test method. This can hinder developers in seeing the relevant verification steps
of the test. Refactoring. To conquer obscure in-line setups, the setup code can be
moved into delegate setup methods, or if the in-line setup is common to all tests,
one can use an implicit setup.

Vague Header Setup. A vague header setup smell occurs when fields are ini-
tialized in the header of a class, but not in implicit setup. We consider this a
smell as the behavior of the code is not explicitly defined, and depends on the field
modifier (static or member), as well as on the implementation of the test frame-
work. Further, field declarations are not restricted to the header of a class, but
can occur anywhere within the class. Vague header setups hamper code compre-
hension and maintainability. Refactoring. Field initializations should be placed
in an implicit setup to specify the behavior and the places to inspect within a
class.

5.3 Analysis of Fixture Usage
This section describes the technique we developed to analyze the test fixture
organization, fixture usage and fixture smells, and suggest refactorings for the test
code. Our reverse engineering technique follows the well-known reconstruction
approach: fact extraction, abstraction, and presentation (Tilley et al., 1996).

5.3.1 Fact Extraction
To determine fixture strategies and fixture-related smells we extract several facts
for each test class. All relevant entities for our analysis are illustrated in the meta
model in Figure 5.1. Firstly, we identify all methods in a class. We di↵eren-
tiate between test methods, setup methods, tear-down methods and test helper



100 AUTOMATED DETECTION OF TEST FIXTURE STRATEGIES AND
SMELLS 5.3

Table 5.1: Smell indicators

Indicator Description
setupFlds Fields set in implicit setups or class header.
usedSetupFlds SetupFlds used in test methods.
adHocFlds Fields solely initialized in test methods.
deadFlds SetupFlds fields never used in any test method.
localVars Variables declared in a test method.
headerInit Fields initialized in the class header.

Table 5.2: Smell Metrics and Thresholds

Smell name Metric

General Fixture usedSetupFlds

setupFlds�deadFlds  0.7

Test Maverick usedSetupFlds ⌘ 0 ^ setupFlds � 1

LCOTM LCOTM � 0.4

Dead Field |deadFlds| � 1

Vague Header Setup |headerInit| � 1

Obscure In-line Setup |localVars| � 10

methods based on the method’s annotation or naming conventions.3 Further, we
extract all global fields of the class, and all local variables for each of the test
methods.

5.3.2 Analysis
The analysis consists of two steps. First, we derive indicators for smells based on
the extracted facts as summarized in Table 5.1. Second, we use those indicators
to measure the existence of test smells based on our metrics (see Table 5.2).

Implicit Fixture Usage Indicators. To determine how much a test class and
its test methods use the implicit setup, we derive smell indicators setupFlds,
usedSetupFlds and deadFlds. setupFlds are fields that are initialized in
the implicit setup procedures or the class header. For example, in Listing 5.1,
the fields repository, repository2, gitDir and store are seen as setupFlds.
usedSetupFlds represents the number of setupFlds of the class that have also
been accessed (i.e. read or write) by a test method. This access can happen
directly in the test method or via (a chain of) helper methods invoked by the test
method. A field only accessed in the setup, but by no test method is not seen
as used. In Listing 5.1, test method testRepository() uses fields repository and
dir, whereas the fields repository2 and store are not used. Further, we estab-

3This depends on the particular test framework.



5.3 ANALYSIS OF FIXTURE USAGE 101

lish field dependency relationships to determine whether a setup field is used by
a test method. Setup fields depend on each other if one field fa is used to set
another field fb (e.g. fb = fa). To extract these relations, we have to analyze the
data flow. We detect direct assignments, but also whether a field fa depends on
another field fb based on method calls (e.g., fb.set(fa)). Hereby, the field used
for the method call (fb) is seen as dependent on the fields (fa) used as para-
meter. This means that in Listing 5.1, test method testRepository() also uses
field gitDir, as repository depends on gitDir. Finally, deadFields are fields
that are initialized in the implicit setup, but are never used by a test method. In
our example, field repository2 is never used by any test method.

Measuring General Fixtures. To identify general fixtures, we calculate the ratio
between how many usedSetupFlds a test method has, and how many setupFlds
exist in the class. If this ratio is below a certain threshold, we identify it as a gen-
eral fixture test method. In our current experiments, we set the threshold to 70%.
We leave determining the optimal thresholds, for example through benchmarking,
for future work.

Listing 5.1: Test Class Example

class BlobStorageExampleTest extends GitTestCase {

//setup field

Repository repository;

Repository repository2;

//header initialization

Storage store = new Storage();

//ad hoc field

Directory dir, gitDir;

@Before public void setUp() throws Exception {

super.setUp();
gitDir = new Directory(".");

//repository depends on gitDir

repository = new FileRepository(gitDir);

repository2 = new FileRepository(gitDir);

}

...

@Test public void testRepository() {

dir = new Directory(".");

loadFile();

...}

private void loadFile(){

repository.getFile("testfile");

...}}

Measuring Test Mavericks. If a class has an implicit setup, i.e. has setupFlds,
and a test method does not use any of the setupFlds, we identify a test method
as detached from the test class setups.

Measuring Dead Fields. Dead fields are all fields that are initialized by the
implicit setup, but that are never used by any test method. We di↵erentiate
between dead fields inherited by the super class (i.e. inherited fields) and dead



102 AUTOMATED DETECTION OF TEST FIXTURE STRATEGIES AND
SMELLS 5.3

fields declared in the class itself. Note that an IDE would not identify deadFlds,
because an IDE only shows whether a field is never used within a class. Our
analysis reveals whether a field is never used by a test method, even if it is
accessed within a helper method or the implicit setups.

Cohesion Indicator. To address how cohesive test methods are in a class, we
need another smell indicator: fields solely initialized in test methods but not in
the setup procedure. We call these fields adHocFlds, as they are only created
when they are needed. In Listing 5.1, the field dir is an adHocFld.

Measuring Lack of Cohesion in Test Methods. To measure how cohesive the
test methods of a test class are, we adjusted the Henderson-Seller Lack of Cohesion
of Method metrics (Henderson-Sellers, 1996). Di↵ering from the original metric,
we exclusively calculate the cohesion between the test methods in a class and
exclude any other methods (e.g. helper or setup methods). For our analysis, we
consider all fields of the test class (i.e. setup and ad hoc fields) that have been
used (i.e. we exclude dead fields). We calculate the Lack of Cohesion of Test
Methods as the following:

LCOTM =
1

|F | ⇤
P|F |

i=1
r(fi)� |M |

1� |M |

Where M is the set of test methods defined by the class, F is the set of
setupFlds and adHocFlds (without deadFlds) of the class, and r(fi) is the
number of test methods that access field fi and fi is a member of F . As we
do not consider deadFlds, the metric reports a value between 0 and 1, with 0
indicating no lack of cohesion and 1 highest lack of cohesion. We choose 0.4 as
an indicator for a smelly test class.

The LCOTM complements the metric for test mavericks and general fixtures,
as it also addresses adHocFlds and thus reflects on how strongly test methods
di↵er from each other independent of the fixture.

Obscurity Indicator. The counterpart to the implicit setup, is the in-line
setup. We measure the obscurity of an in-line setup based on the number of local
variables directly defined within a test method (i.e. localVars indicator).

Measuring obscure in-line setup. We detect an obscure in-line setup if the
number of localVars exceeds a certain threshold (i.e. 10 variables per method).
The rationale behind this threshold is that with the increasing length of the test
method, the primary focus of the test may be hidden. The chosen threshold
follows the best practices for the length of a method.

Header Indicator. Finally, the last smell indicator is the fields initialized in
the header of the class (i.e. headerInit).

Measuring Vague Header Setup. We report this when at least one field is
initialized in the header of the class.



5.4 ANALYSIS OF FIXTURE USAGE 103

Figure 5.2: Excerpt of the Test Fixture Smell Report for eGit

5.3.3 Presentation

This section explains how we present the information gathered in the analysis.
We chose to use a navigable hypertext report to present the outcome to the
developers, thus supporting a seamless navigation between overviews and details.
The report is split into three parts: the fixture classification, the smell overview
and the detail improvement report.

Fixture Classification Report. This report provides a list-based overview of
the fixture strategies and used framework mechanisms of all test classes. Further
it highlights the inheritance structures.

Test Fixture Smell Report. This report provides an overview of the test smells,
also in the form of a list, as illustrated by Figure 5.2. The smells are indicated
by an icon and, where relevant, a number showing how often the smell occurred
within the test class. To get detailed information about the test class, the de-
veloper can click on the test class name and drill into the detail improvement
report.

Detail Improvement Report. This report provides detail information on the
analysis outcome for a single test class. In the first part of the report, a summary
of all smells of the class is given, including a detailed description of the cause.
Further, each smell description is enhanced with refactoring suggestions, as illus-
trated in Figure 5.3. The second part of the report outlines how fields and helper
methods are used within each test method of the class. This part details inform-
ation on the fixture usage, which is hard to obtain from the IDE and the code
alone. It is designed to guide refactoring decisions and to support the developer
during the smell assessment.



104 AUTOMATED DETECTION OF TEST FIXTURE STRATEGIES AND
SMELLS 5.5

Figure 5.3: Excerpt Detail Improvement Report for eGit - BlobStorageTest

5.4 Implementation and Tool Architecture
TestHound is implemented in Java and supports languages which compile to Java
byte code by using the Apache BCEL library to extract facts. TestHound supports
the JUnit and TestNG test frameworks, but can easily be extended to support
other frameworks. Although TestHound supports only Java, the analysis is lan-
guage and framework independent and only the facts extraction aspect is language
specific. For the generation of the hypertext report, we use the StringTemplate
engine.4 TestHound is available for download5 and we are in the process of making
the source code available on GitHub. In a future release, the tool will be avail-
able as a Maven6 plug-in to facilitate integration with the continuous integration
process.

5.5 Experimental Design
This section outlines the experimental design of the study, including the research
questions, case studies, interviews and questionnaires.

5.5.1 Research Questions
To evaluate the applicability and helpfulness of our technique, we set out to
investigate the following research questions:

RQ1 What do the structure and organization of test fixture look like in practice?

4http://www.stringtemplate.org/
5http://swerl.tudelft.nl/bin/view/MichaelaGreiler/TestHound
6http://maven.apache.org/



5.5 EXPERIMENTAL DESIGN 105

RQ2 Do fixture-related test smells occur in practice?

RQ3 Do developers recognize these test smells as potential problems?

RQ4 Does a fixture analysis technique help developers to understand and adjust
fixture management strategies?

To answer our four research questions, we applied a mixed methods research ap-
proach. To answer RQ1 and RQ2, we applied case study research and investigated
the code bases of three di↵erent Java-based software systems. To answer RQ3 and
RQ4, we used interviews and a questionnaire.

5.5.2 Case Studies
We use three di↵erent subject systems in our experimental design - one closed
and two open source systems.

HealthCare: Closed Source Health Care System. The first subject system is
developed by a company based in Canada, that o↵ers health care related software
solutions. Part of the system is a Java back-end, which provides an API to other
systems. This back-end comprises 750K lines of code and has 945 test methods,
using the TestNG7 framework.

eGit: Open Source Eclipse-Integrated Version Control System. eGit8 integ-
rates the Git version control system into the Eclipse IDE. It consists of 130K
lines of code and has 479 test methods, all written in JUnit9.

Mylyn: Open Source Task Management System Mylyn10 provides task man-
agement functionality within the Eclipse IDE. It consists of 500K lines of code
and has 1644 test methods, written in JUnit.

5.5.3 Interviews and Questionnaire
We set out to evaluate our tool and technique by presenting it in a one hour
session to a group of 13 professional software developers. These developers worked
for the company of the HealthCare system. All developers have experience in
writing and maintaining test code, and approximately half of the participants
have been working on the code base of the HealthCare system. In this session, we
covered the general functionality and purpose of TestHound, as well as the report
produced for the HealthCare system. After the presentation, we interviewed five
software developers who had contributed to the code base, with each interview
taking 30 minutes. During these interviews, the participants could browse through
the report produced by TestHound, ask questions and express their opinions on
TestHound in depth. We recorded and transcribed each interview.

7
http://testng.org

8
http://www.eclipse.org/egit/

9
http://www.junit.org

10
http://www.eclipse.org/mylyn/



106 AUTOMATED DETECTION OF TEST FIXTURE STRATEGIES AND
SMELLS 5.6

To capture the opinions of all participants of the presentation, we designed a
questionnaire addressing the perception of the audience on software maintenance
and the helpfulness of “TestHound”. The questionnaire was filled in by all 13
developers and is available online.11

Pilot Sessions. To improve the experimental design of the interviews and
questionnaire, we conducted three pilot sessions with experienced testers. Two
pilot participants were co-workers, and the third participant was the second author
of this paper.

5.6 Evaluation
5.6.1 RQ1: What do the structure and organization of test fixture look like

in practice?
This section highlights the basic structure and organization of the test code we
analyzed. The results are summarized in Table 5.3.

Package Structure. In all three case studies, the package structure of the
test code closely followed the package structure of the system under test. In
eGit and the HealthCare system, test code and production code is not sep-
arated by an additional package (e.g. test). In contrast, for the Mylyn sys-
tem, the package “org.eclipse.mylyn.commons.core” is mapped to the package
“org.eclipse.mylyn.commons.tests.core”. In all three systems, the test code is of-
ten mapped to classes. For example, in Mylyn, the class “CoreUtil” is tested by
the class “CoreUtilTest”.

In the HealthCare system, this mapping is followed rigorously, and this design
decision has a significant impact on the modularity of the test code. The test
code of this system consists of only 36 test classes that comprise 933 unique test
methods (two of which are parameterized tests). Some of the test classes have
more than 4,000 lines of code. For example, one test class comprises 112 test
methods and approximately 4,500 lines of code. The Mylyn system consists of
232 test classes that comprise 1,644 test methods. Three of these test classes
comprise more than 100 test methods, with a maximum of 172 test methods in
the TextileLanguageTest (i.e. more than 1,500 lines of code). In eGit, 87 test
classes comprise 479 test methods. The test class with the most tests has 19 tests
and 600 lines of code.

Framework Fixture Functionality. In all three systems, the majority of the
tests use the implicit setup mechanisms of the test frameworks. Interestingly, in
the HealthCare system, only the functionality to automatically invoke implicit
setups, either before one class or one test method, is used. The more fine-grained
directives which TestNG o↵ers are not used. In the eGit system, several separate
test suites exist and the usage pattern of the implicit setup constructs di↵ers: the
test suite addressing the core of the system often invokes the setups before each

11http://swerl.tudelft.nl/bin/view/MichaelaGreiler/TestHound



5.6 EVALUATION 107

Table 5.3: Fixture Management Strategies

Project #test #test Implicit setup No Tear
classes methods member class setup down

eGit 87 479 56 47 5 79
HealthCare 36 933 26 25 9 25
Mylyn 232 1644 164 0 68 152

Table 5.4: Fixture Problems

Project General Fixture Test Maverick LCOTM
#methods pct. #methods pct. #classes pct.

HealthCare 299 ⇡ 32% 84 ⇡ 9% 7 ⇡ 19.4%
Mylyn 377 ⇡ 23% 82 ⇡ 5% 36 ⇡ 15.5%
eGit 65 ⇡ 13.5% 17 ⇡ 3% 12 ⇡ 13.8%

Project Dead Field Obscure In-line Vague Header
#fields pct. #methods pct. #classes pct.

HealthCare 180 ⇡ 33% 100 ⇡ 10.7% 26 ⇡ 72%
Mylyn 66 ⇡ 12.1% 17 ⇡ 1% 35 ⇡ 15%
eGit 110 ⇡ 23.6% 8 ⇡ 1.6% 79 ⇡ 91%

test method, and the fields are mostly non-static. On the other hand, in the test
suites addressing the user interface functionality, setups are most often invoked
before each class and the fields are static. This design decision is probably due
to performance considerations. User interface-related tests often need more setup
and involve more expensive resources. In Mylyn, only the implicit setups that are
executed before each test are used. In all systems, the tear down mechanisms of
the test frameworks are used less frequently than the setup mechanisms.

5.6.2 RQ2: Do fixture related test smells occur in practice?
Table 5.4 summarizes all smells detected in the three projects, whereby showing
the absolute number and the percentage of entities a↵ected by a smell. Each of
the smells occurred several times in practice. In the following, we will present
some highlights.

General Fixture Smell. The general fixture smell occurred for 32% of the test
methods in the HealthCare system, for 23% of the test methods in Mylyn, and for
13.5% of the tests in eGit. An example from the eGit system is ProjectReferen-
ceTest. In this test class, none of the setup fields are used by all test methods (i.e.
the fixture is disjointed). To improve the class design, an extract class refactoring
is recommended. In the HealthCare system, only a few classes contribute the
majority of general fixture methods. In particular, three classes comprise 172 of
the 299 general fixture methods (i.e. ⇡58%). In Mylyn, the largest test class with
172 tests contributes 168 general fixture methods. This class has only two fields,
whereby one is only used by three test methods. In eGit, fewer general fixture
methods are detected and they are more distributed among classes, as compared



108 AUTOMATED DETECTION OF TEST FIXTURE STRATEGIES AND
SMELLS 5.6

with the other systems.
Test Mavericks Smell. Test mavericks occur less frequently than general fixture

methods. Also, they are more distributed among classes. In the HealthCare
system, the largest class (with 112 tests) contributes the largest set of detached
methods (23 methods). In Mylyn, the class TaskListExternalizationTest has the
largest number of test mavericks (10 out of 28). In eGit, 4 of the 8 methods in
ChangeTest are test mavericks.

Dead Fields Smell. All three systems contains many dead fields, and most of
them are are inherited by super classes and not needed. In case fields declared in
the actual test class are dead, it often seems to be because of obsolete functionality
or open issues. In the HealthCare system, more dead fields exist than in the other
systems. There are two main reasons: first, as discussed most tests inherited from
only two large super classes and inherit fields that are never used. Second, in this
system many static methods are access via the fields, which is unnecessary and
often even not recommended. For example, via a field context the static method
getBean() is invoked (i.e. context.getBean()), whereby getBean() should be access
via the class.

Lack of Cohesion of Test Methods Smell. In the three systems, 14-19% of
the classes have a LCOTM value greater or equal 0.4. In Mylyn, a class with
high LCOTM (0.8) is the EncodingTest. Each of the test methods in the class
uses di↵erent combinations of the setupFlds. In eGit, an example of a test with
high LCOTM is ProjectReferenceTest. Here, all test methods share one field, and
in addition, each test method addresses an additional field. In the HealthCare
system, the test class with the highest LCOTM (0.89) has two used setupFlds

that are only used by 4 out of 23 test methods.
Obscure In-line Setup Smell. In the HealthCare system, 10% of the methods

contain an obscure in-line setup. The average number of variables declared within
these tests is 14.4, with a maximum of 29 variables. In the Mylyn and eGit system,
less than 2% of the test methods are reported to have an obscure in-line setup. In
terms of test size, for example in Mylyn, a test method testSynchChangedReports
in Class BugzillaRepositoryConnectorTest with 24 localVars has 113 lines of
code.

Vague Header Setup. In the HealthCare system, header initializations occur
in 72% of the test classes, and in eGit, in 91% of the test classes. In Mylyn, this
smell occurs in only 15% of the test classes.

5.6.3 RQ3: Do developers recognize these test smells as potential prob-
lems?

During the tool demonstration and interviews, it became clear that developers
do indeed recognize the reported test smells as potential problems, and that they
see a strong connection between smelly tests and maintenance overhead. In the
questionnaire, as illustrated in Figure 5.4, 12 of 13 developers agreed with the
statement that wrong fixture management can lead to code quality problems, and



5.6 EVALUATION 109

0
2
4
6
8

10
12
14

Wrong test fixture
management can lead

to code quality
problems.

Improving test code
quality is important.

We regularly engage in
maintenance tasks of

test code.

Wrong test fixture
management can lead

to code quality
problems.

Improving test code
quality is important.

We regularly engage in
maintenance tasks of

test code.

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

Figure 5.4: Answers of the questionnaire about maintenance attitude and tool expect-
ations

all indicated that improving test quality is important. Only three indicated they
they regularly engage in maintenance of test code, whereas four indicated that
they do not regularly maintain test code. In the interviews, we investigated why
test code is not regularly maintained. All of the interviewed developers said that
they had expected their test code base to be very messy. Interviewee number two
(i.e. P2) says: “We know our classes are too large and wrongly focused. We start
to write test code and then, next step, we improve.” Soon it became clear that
time for the next step is limited, as P1 says: “We do not have the option to say
’Oh, that’s ugly, I’ll spend a day to clean it up’ if it does not give us immediate
business.”

On the other hand, developers express that they are slowed down by the smelly
classes (that our tool also identified). P1 says “If you have to debug a bug revealed
by one of these large test classes, then it takes 5 minutes to run and it makes you
think ’I don’t want to do that anymore’.”

How do these test code quality problems emerge? P1 says that “people think:
’Ah, this test has to do with a ContainerType’, and then add the test to the
ContainerTypeTest class, even though it has nothing to do with the other tests
in this class.” He adds “I skip the implicit setup because often the initial setup
is made by the first person who created the class. Maintainers are adding stu↵
to this setup as they go along, but maybe this is not as common for the other
methods and some methods are even unrelated. And then, you make it just in-
line, ugly in-line, instead of using the provided framework functionality.” Also,
other developers explain that they do not look at the implicit fixture because their
experience tells them it is often not related to the test methods in a class.

Two interviewees did not see the value of detecting the dead fields smell for
their system. P2 explains: “I am not bothered by the inherited fields of the super
class. If two classes have the same functionality, we immediately move this in
the super class so they can share it.” Also P3 does not see a problem with
this design and says “I find the information on fields misleading. In our code
base, inheritance is used as a convenient way of accessing helper methods.” Even
though two participants are not concerned with their design decisions, systems
which use inheritance instead of composition to allow code reuse are known to



110 AUTOMATED DETECTION OF TEST FIXTURE STRATEGIES AND
SMELLS 5.6

be vulnerable to the fragile base class problem, which hinders maintainability
(Mikhajlov and Sekerinski, 1998). The other three interviewees refer positively to
the identification of the dead field smell.

5.6.4 RQ4: Does a fixture analysis technique help developers to under-
stand and adjust fixture management strategies?

The results of the questionnaire show that developers expect a fixture manage-
ment tool to be helpful during understanding and adjusting fixture management
strategies, as illustrated in Figure 5.4. All participants agree that a fixture man-
agement tool could help improve the test code quality and 12 developers think the
tool shows relevant information. In the interviews, all developers were positive,
as demonstrated by P4: “I really like the tool. I think it presents a lot of useful
information. I think it can definitely be very beneficial for our company.”

Not all developers are sure to look at the test fixture smell reports regularly.
In the interviews, developers strongly felt that to allow adoption, the tool must
be integrated with the regular build infrastructure. P1 says: “It’s not enough to
have the tool run. It should be part of the infrastructure and result in a failed
build.” Because time for quality improvement is limited, P3 suggests: “We are
not actively looking for opportunities to improve the code, but one gets the lucky
one, when the threshold is exceeded.” He then adds: “If the tool calls our attention
to these problems, we would schedule blocks of time to make the internal quality
better.” P5 likes that: “I cannot get others to review my code all the time. So, a
tool that tells me that things look odd, that’s good.”

Regarding refactoring test code, P1 says: “You want to assess how much risk
is involved with a refactor. Sometimes you come to that point that you are less
likely to change a test because it is smelly. But with the tool telling you that this
test did not use anything, then you are more trusting to refactor test code.” P1
mostly appreciates refactorings that can be done easily and quickly: “It is all
about low-hanging fruit: what can you do easily and quickly.”

TestHound is designed not only to indicate smells in the test code, but also
to guide the developer during refactoring by providing information on the test
fixture usage profile, which is hard to obtain manually. This tool characteristic is
also valued by the developers, as P1 says: “I would look at the test methods and
they might look unrelated, but without a lot of digging and work I might not know
that they were not relying on anything from the class or the super class.” And
P3 especially liked the detail report: “The summary report is good to get an idea
why the build failed, but then I want to go and see these variables in the detail
report.” Also, P5 likes the refactoring suggestions: “The tricky part is to actually
understand why something is indicated as smelly. That’s the learning part. The
refactoring suggestions help. That’s interesting to see.”

We also asked participants to list the additional features they would like to
see. P4 expresses that the di↵erent smells should be integrated in one high-level



5.7 DISCUSSION AND THREATS TO VALIDITY 111

metric: “This would gives us an overall assessment, so that if you make some
improvements you should see it in the metric.”

Another positive outcome of the evaluation is that developers state the tool
makes them think di↵erently about their test code. P5 said: “I found particularly
interesting that the tool made me think about how the tests that I write might not
be good tests. They do their job, but they may not be maintainable.” P3 said:
“The report was definitely very useful. It triggered a lot of ideas to improve and
discussions.”

5.7 Discussion and Threats to Validity
In the following section, we discuss some of the key findings, observations and
threats to validity.

Test Class to Class Convention. A simple way to start organizing test suites
is to adopt the Testcase Class per Class pattern (Meszaros, 2007), a commonly
used approach that is supported by IDEs like Eclipse which can generate test class
templates for a given class. This is at odds with a di↵erent pattern, Testcase
Class per Fixture, in which “we organize Test Methods into Testcase Classes
based on commonality of the test fixture.” (Meszaros, 2007). Our empirical
study shows that this pattern is not followed as often as it should, resulting in
the smells and maintainability problems we detected. Based on this, we think
it is necessary to rethink traditional mapping strategies and to develop further
grouping recommendations and naming conventions, which take into account the
evolution of a class as it starts to require more test fixtures.

Frequency of Vague Headers. One might argue that because vague headers
occur frequently, they might not be a potential problem. During the interviews,
we asked developers to explain the behavior of vague headers. Even though de-
velopers are familiar with the test framework and did place vague headers them-
selves, for several incidences they were uncertain or wrong about the concrete
behavior.

Violation of the Single Responsibility Principle. Another observation we made
is that the problem of not being able to have a non-smelly test class for a class
can indicate a problem with the class under test, such as having too many re-
sponsibilities. Sometimes the solution can be not only to split the test class but
also to split the class under test into several classes.

Inheritance Structure. In the test code we analyzed, we saw that some super
classes are inherited by many test classes. This leads to dead inherited fields,
because inherited setup functionality may not be needed. In all three systems,
the dead fields are often the same ones (from certain super types), but repeatedly
dead for many subclasses. While unused inherited fields are not a problem per
se, the large superclass may become fragile (conform (Mikhajlov and Sekerinski,
1998)), making developers reluctant to adjust it.

Performance Improvement. Based on our case studies, we conclude that re-



112 AUTOMATED DETECTION OF TEST FIXTURE STRATEGIES AND
SMELLS 5.8

factoring of test mavericks and general fixtures can lead to interesting performance
improvements, especially considering that with continuous integration, test suites
might run several times a day. In a future study, we want to gain a deep under-
standing of potential performance improvements associated with the application
of the suggested refactorings of smelly test fixtures.

Threats to Validity. In terms of generalizability, in its current form, our im-
plementation only works for Java-based systems that use JUnit or TestNG test
frameworks. On the other hand, we think that this technique is not only eas-
ily transferable to other xUnit testing frameworks, but also to other languages.
Further, our evaluation is limited to three software systems. We chose three sys-
tems that are quite di↵erent in nature (domain, open versus closed source), and
assume that similar results will occur in other software systems. We chose the
closed source case study because of the availability of software engineers to take
part in the study and its closed source nature. The two open source systems were
selected because they are well-known and used software systems. Further, we
were familiar with the systems through earlier studies and thus could more easily
test that the analysis was accurate. The developers we interviewed also felt this
tool could be used to analyze other systems they had worked with.

With respect to internal validity, the analysis may be incomplete or have
bugs. To conquer this threat, we implemented many test cases. The developers
also indicated the results were consistent with their understanding of the system.
Finally, the developers may have been positively biased towards the tool due
to the nature of the experimental design. We tried to o↵set this somewhat by
collecting the responses to the questionnaire anonymously.

Our method has some limitations when establishing dependency relationships
between setup fields. This can lead to false-positive dead fields. To mitigate the
risk of wrong results, we manually inspected all dead fields, and found only a few
false-positive cases. For example, in eGit, 3% of the fields could not be mapped
to a field usage. For future work, we will enhance the recognition of field usages,
and we plan to assess the accuracy of the results in additional case studies. The
metrics designed for smell detection are based on field and variable declarations.
Actions performed on persistence data storages (such as databases or files) are
only detected when a handle (i.e., object reference) is used for access.

5.8 Related Work
Earlier work introducing test smells has been discussed in Section 5.2. Scant re-
search focuses on automatic detection of test smells. Among them, Van Rompaey
et al. (2007) tried to detect the test smells General fixture and Eager test by
means of metrics. In a subsequent paper, they describe a tool which used well-
known software metrics to predict a broader variety of potential problems and test
smells (Breugelmans and Van Rompaey, 2008). Our study di↵ers in several as-
pects. First of all, we focus on test fixture management and analyze the test code



5.9 CONCLUDING REMARKS 113

for specific fixture problems that are relevant in practice, and provide concrete
refactoring suggestions. In contrast to our work, Borg and Kropp (2011) describe
automated refactorings for acceptance tests based on the FIT framework. To the
best of our knowledge, fixture-related test smells and refactoring have not been
studied in detail so far.

In general, code and design smells have been researched in previous work. For
example, Moha et al. (2010) outline a method called DECOR and its implement-
ation to detect several code and design smells, and evaluate their technique in
several case studies. Lanza and Marinescu use metrics to identify classes that
might have design flaws (Lanza and Marinescu, 2006; Marinescu, 2001).

5.9 Concluding Remarks
The goal of this paper is to understand the nature of fixture-related problems
in developer test suites. To that end, the contributions of the paper are 1) five
new test fixture smells, 2) a technique to analyze test fixtures and automatically
detect six test fixture smells, 3) an implementation of the technique in a tool called
TestHound, 4) an investigation of three industrial-strength case studies that shows
that test fixture smells occur in practice and 5) an evaluation with 13 developers
that shows that the tool is helpful to understand, reflect on and adjust the test
fixture.

In our future work, we plan to further research the evolution of test smells
and investigate in depth how test class-to-class mappings influence the emergence
of test fixture smells. Furthermore, we intend to apply TestHound to a range of
further systems, broaden the scope of our fixture analysis, and assess performance
implications of the proposed refactorings.

Acknowledgments: We would like to thank all interview and questionnaire parti-
cipants for their time and commitment.





Chapter6
Strategies for Avoiding Text Fixture
Smells During Software Evolution

Abstract
An important challenge in creating automated tests is how to design test fixtures,
i.e., the setup code that initializes the system under test before actual automated
testing can start.1 Test designers have to choose between di↵erent approaches for
the setup, trading o↵ maintenance overhead with slow test execution. Over time,
test code quality can erode and test smells can develop, such as the occurrence
of overly general fixtures, obscure in-line code and dead fields. In this paper, we
investigate how fixture-related test smells evolve over time by analyzing several
thousand revisions of five open source systems. Our findings indicate that setup
management strategies strongly influence the types of test fixture smells that
emerge in code, and that several types of fixture smells often emerge at the same
time. Based on this information, we recommend important guidelines for setup
strategies, and suggest how tool support can be improved to help in both avoiding
the emergence of such smells as well as how to refactor code when test smells do
appear.

6.1 Introduction
Modern software development often includes the use of extensive automated test
suites. While automated tests are helpful from a continuous integration and re-
gression testing perspective, they lead to a substantial amount of test code (Zaid-

1This chapter will appear in the 2013 10th Working Conference on Mining Software Repos-
itories. The authors of this publication are Greiler, Zaidman, van Deursen and Storey.

115



116 STRATEGIES FOR AVOIDING TEXT FIXTURE SMELLS DURING SOFTWARE
EVOLUTION 6.1

man et al., 2011). This test code is often executed frequently, and needs to be
maintained and understood. The long term success of automated testing is highly
influenced by the maintainability of the test code (Meszaros, 2007). To support
easier maintainability of a system, test methods should be structured clearly,
well named, small in size, and code duplication across test methods should be
avoided (Meszaros, 2007; Freeman and Pryce, 2009).

One important part of a test is the code that initializes the system under test
(SUT), sets up all dependencies and puts the SUT in the right state to fulfill
all preconditions needed to exercise the test. In line with Meszaros (2007), we
refer to this part of a test as the test fixture. Developers have several options for
structuring their test fixture code. The most straightforward option is to place
the setup code directly in the test method, which we refer to as an in-line setup.
An alternative approach is to place the setup code in helper methods that can be
called by several test methods, the so-called delegate setup (Meszaros, 2007).

Today’s testing frameworks, such as the widely used xUnit family, have dedic-
ated mechanisms for managing setup code invocations (Beck, 2002; Gamma and
Beck, 2003). Therefore, helper-methods comprising the setup code can be marked
(e.g., using annotations or naming conventions) as specific setup methods, and
the test framework takes care of invoking them at a specific point in time. We
refer to this as an implicit setup as the invocation happens implicitly.2

Developers must decide how to set up test fixtures and adjust their fixture
strategies during the evolution of test code. Otherwise, they end up with poor
solutions to recurring implementation and design problems in their test code,
also known as test smells (van Deursen et al., 2001). To support developers
during the analysis and adjustment of test fixtures, we previously developed a
tool called TestHound3 to automatically detect test fixture smells and guide test
code refactoring (Greiler et al., 2013a).

An evaluation of TestHound showed that developers are concerned about test
fixture smells, and that TestHound helps them to discover and address those
smells. But, we also learned that resolving these smells after they have been in
the code for a long time can be problematic. Developers would benefit greatly
from having the tool available in the continuous integration environment so that
they are made aware of changes in the densities of test smells immediately.

In this paper, we investigate the evolution of test fixture smells and which
software changes lead to increased test smell densities to determine the best time
to alert developers about smell changes. We look at when and how test fixture
smells are introduced, and what role the setup strategies play in smell evolution.
Our contributions in this paper are:

1. a technique for analyzing multiple revisions of a software system for fixture-
related test smells, and examining trends in smell evolution;

2For example, in the JUnit framework, methods can be named setUp() or marked with
annotations such as @Before or @BeforeClass.

3
http://swerl.tudelft.nl/bin/view/MichaelaGreiler/TestHound



6.2 TEST SMELLS 117

2. an implementation of this technique in a tool called TestEvoHound, which
mines Git and SVN repositories for test fixture smells;

3. insights in test fixture smell evolution in real-world situations based on an
investigation of five well-known open source systems;

4. strategies for avoiding test fixture smells.
Our investigation shows that fixture management strategies strongly influence

fixture smell evolution. Also, we find that fixture smells remain stable over long
periods of time, until certain code changes cause drastic changes in smell densities.
Making developers aware of these changes can help prevent the introduction of
test smells with only small adjustments to the test code in a continuous and
incremental fashion. Further, we show that classes with a larger number of test
methods have more test fixture smells than classes with fewer test methods, and
thus recommend that classes with many test methods be avoided or refactored.

Section 6.2 briefly summarizes di↵erent test fixture smells. Section 6.3 details
the experimental design used to investigate the evolution trends of test fixture
smells. Section 6.4 outlines the measurements implemented in the TestEvoHound
tool. Section 6.5 details the results of our investigation, followed by a discussion of
the findings in Section 6.6. In Section 6.7, we present related work and conclude
in Section 6.8.

6.2 Test Smells
The code smells metaphor was first introduced by Fowler (1999), who describes
a code smell as a poor solution to a recurring implementation and design prob-
lem. Code smells are not a problem per se, but they may lead to issues such
as understanding di�culties, ine�cient tests and poor maintainability of a soft-
ware system. Later, van Deursen et al. (2001) introduced the term test smells
by applying the smell metaphor to test code. Since then, their initial set of test
smells has been extended (Meszaros, 2007; Van Rompaey et al., 2006; Neukirchen
and Bisanz, 2007). In (Greiler et al., 2013a), we enhanced these test smells with
additional fixture-related smells, derived metrics to aid in their detection, and im-
plemented a technique to automatically detect test fixture smells in a tool called
TestHound.

In this paper, we investigate the evolution of these test fixture smells, which
are summarized below, in order to better understand how they can be avoided
and how tool support would be most beneficial for developers. We refer the reader
to (Greiler et al., 2013a) for more details on the test fixture smells.

General Fixture Smell. The general fixture smell occurs if test classes contain
broad functionality in the implicit setup, and if several tests only access part of
the fixture. Problems caused by a general fixture are two-fold. Firstly, the cause-
e↵ect relationship between fixture and the expected test outcome is less visible,
and tests are harder to read and understand. This can lead to fragile tests: a
change that should be unrelated a↵ects tests because too much functionality is



118 STRATEGIES FOR AVOIDING TEXT FIXTURE SMELLS DURING SOFTWARE
EVOLUTION 6.2

covered in the fixture. Secondly, test performance can deteriorate and long test
execution times may eventually cause developers to stop running tests altogether.
We identify a test method as a general fixture method when it uses less than 70%
of the fields initialized in the setup.

Test Maverick Smell. A test method is a maverick when the class providing
the test method contains an implicit setup, but the test method is completely
independent from the implicit setup procedure. The implicit setup is executed
before the test method, but it is not needed. In such cases, understanding the
cause-e↵ect relationship between setup and test method can be hampered because
discovering that test methods are unrelated from the implicit setup can be time
consuming. We identify a test method as a maverick when it does not use any of
the setup fields initialized.

Dead Fields Smell. The dead field smell occurs when a class or its super classes
have fields that are never used by any of the test methods. Often, dead fields are
inherited from a super class. This can indicate a suboptimal inheritance structure,
or that the super class conflicts with the single responsibility principle (Martin,
2008). Also, dead fields within the test class itself can indicate incomplete or
deprecated development activities. We identify dead fields as all fields that are
initialized by the implicit setup, but never used by any of the test methods.

Lack of Cohesion of Test Methods Smell. Cohesion of a class indicates how
strongly related and focused the various responsibilities of a class are (Chidamber
and Kemerer, 1994). Low cohesive classes are smelly because they negatively af-
fect code reuse, maintainability and comprehension (Fowler, 1999; Li and Henry,
1993). The smell Lack of Cohesion of Test Methods (LCOTM) occurs if test meth-
ods are grouped together in one test class without being cohesive. To measure
LCOTM, we adjusted the Henderson-Seller Lack of Cohesion of Method metric
(Henderson-Sellers, 1996). Di↵ering from the original metric, we focus on the
cohesion between test methods in a class.

Obscure In-Line Setup Smell. Meszaros (2007) introduced the smell obscure
test to refer to a test that is di�cult to understand, and thus, unsuitable for
documentation purposes. From this smell we derived the obscure in-line setup
smell. An in-line setup should consist of only the steps and variables essential
to understanding the test; necessary but irrelevant steps should be encapsulated
into helper methods. An obscure in-line setup covers too much setup functionality
within the test method, and this can prevent one from seeing the test’s relevant
verification steps. We measure the obscurity of an in-line setup based on the
number of local variables directly defined in a test method.

Vague Header Setup Smell. A vague header setup smell occurs when fields
are solely initialized in the header of a class. We consider this a smell as the
behavior of the code is not explicitly defined and depends on the field modifier
(static or member) as well as on the implementation of the test framework. Vague
header setups might hamper code comprehension and maintainability, as fields
can be placed anywhere in the class. Further, in many test frameworks exception
messages are more expressive for fields initialized in the setup. We report a vague



6.3 EXPERIMENTAL SETTING 119

header smell when at least one field is solely initialized in the header of a class.

6.3 Experimental Setting
To understand test fixture smell evolution, we used case study research and in-
vestigated five research questions within five subject systems, as detailed below.

6.3.1 Research Questions
Our research questions focused on the evolution of test fixtures and test fixture
smells.

RQ1: Do test fixture strategies change over time?

RQ2: Do test fixture smell densities increase over time?

RQ3: How are test fixture smells spread throughout a project?

RQ4: Which changes cause alterations in fixture smell trends?

RQ5: Are test fixture smells resolved?

We investigated di↵erent test fixture strategies and the changes made to test
fixtures over time to get a general understanding of the characteristics of the
systems under investigation (RQ1). To understand whether test fixture smell
densities increase during the life of a project, we looked at test fixture smell
trends (RQ2). We also looked at fixture smell dispersion to understand how
smells spread throughout a software system (RQ3). We investigated what causes
test fixture smells to change statistically and by manual investigation of severe
changes (fluctuations) in smell trends (RQ4). To see whether smells are resolved
by the developers (RQ5), we followed smelly classes throughout their evolution.

6.3.2 Case Studies
To investigate the evolution of test fixture smells, we selected five well-known, Java
based, open source projects that have test suites and automatic build files. We
display important characteristics of the latest analyzed revision of these projects
(i.e., size, analysis duration, and number of classes comprising setup methods) in
Table 6.1.

Checkstyle is a tool to help programmers write Java code that adheres to a
coding standard. We analyzed 2252 Checkstyle revisions. The latest revision
contained 549 test methods.

PMD is a tool to analyze Java source code for potential problems such as
dead or duplicated code. We analyzed 1900 PMD revisions. The latest revision
contained 739 test methods.



120 STRATEGIES FOR AVOIDING TEXT FIXTURE SMELLS DURING SOFTWARE
EVOLUTION 6.4

.

Table 6.1: Fixture Management Strategies

Project KLOCs # Test # Test No No. Period in Date
classes cases setup revisions life cycle

of project

Voldemort JUnit 130 132 520 71 2900 start ! end 04/2011-10/2012
PMD 174 118 739 102 1900 mid ! end 09/2007-11/2012
Checkstyle 66 156 549 131 2251 start ! end 06/2001-10/2010
Jsoup 20 23 372 23 973 start ! end 12/2009-09/2012
Java Azure SDK 39 30 358 14 300 start ! end 10/2011-10/2012

Jsoup is a Java HTML parser that provides an API to extract and manipulate
data using DOM, CSS and JQuery-like methods. We analyzed all 973 revisions
of Jsoup, and the latest revision contained 372 test methods.

Azure Java SDK provides the Azure (i.e., Microsoft Cloud Platform) libraries
for Java. We analyzed all 300 revisions of Azure. The latest revision contained
358 test methods.

Voldemort is a distributed key-value storage system. We analyzed all 2900
revisions of Voldemort. The latest revision contained 520 test methods.

6.4 Analysis of Fixture Smell Evolution
In this section, we introduce TestEvoHound, a tool we developed to automatically
analyze the evolution of test fixtures and test fixture smells over multiple revisions
of a software system. We also detail the measurements taken in order to answer
our research questions.

6.4.1 TestEvoHound
We developed TestEvoHound to analyze fixture smell evolution. TestEvoHound
works with Git and SVN repositories, and is available for download.4 When
analyzing code, TestEvoHound executes four tasks.

During the Revision Checkout task, TestEvoHound checks out each revision
of the project under analysis, and for each revision it starts the Build Process
task. Here, the tool searches for ANT or MAVEN build files, initiates the build
process and compiles the source code (including tests). Then, the Test Fixture
Smell Analysis task invokes the TestHound tool to analyze the current revision
for smells and stores the outcome. Finally, when all revisions have been analyzed,
the Trend Analysis occurs. Here, the TestEvoHound tool calculates the trends
and measurements among all revisions, as described in the next subsection. This
information is stored in comma-separated value format to allow easy visualization
by tools like Excel or R.5

4
http://swerl.tudelft.nl/bin/view/MichaelaGreiler/TestEvoHound

5
http://www.r-project.org/



6.5 ANALYSIS OF FIXTURE SMELL EVOLUTION 121

6.4.2 Measurements to Answer the Research Questions

RQ1. To see whether test fixture management changes over time, we looked at
the presence and absence of the implicit setup mechanisms provided by the test
frameworks. This means that, for each project and over all revisions, we analyzed
how many of all test classes contained an implicit setup and whether this changed
over time. We also analyzed how many fields were declared in a test class, as fields
are also a way to create a state accessible by all test methods of a test class.

RQ2. To answer whether test fixture smell density increases over time, we
measured the occurrence of the six di↵erent fixture smells for each revision, and
charted whether the ratio between smelly entities to all entities changed. We
looked at this ratio because all of the systems under study increased in size over
time. Thus, the number of smelly entities has to be considered in relation to the
overall number of entities. This ratio demonstrates whether the quantity of smells
is rising or falling. In the remainder of this paper, we refer to a series of ratios as
the trend of smell evolution.

For the general fixture, the test maverick, and the obscure in-line setup smells,
we compared the number of test methods a↵ected by these smells with the overall
number of test methods in the code base. We calculated the trend in dead field
evolution by comparing the number of dead fields with the overall number of
fields. For the LCOTM and vague header smells, we compared the number of test
classes a↵ected with the overall number of test classes.

RQ3. To better understand whether test fixture smells are widely spread
among all test classes, or whether certain test classes are more prone to fixture
smells, we investigated the dispersion of fixture smells. To do this, we looked at
histograms of the test fixture smells.

RQ4. To understand which software changes cause test fixture smell densities
to change, we statistically tested whether the number of test methods or fields
within a class correlates with the smell density of a class. Then, we manually in-
vestigated the code base and the commit logs for periods where severe fluctuations
in the trends of test fixture smells (increase or decrease) occurred.

For the statistical tests, we used Spearman correlations provided by the stat-
istical program R (package hmisc) to investigate the following two hypotheses:

H1 The more test methods placed within a test class, the higher the smell
density of a test class is.

H2 The more fields placed within a test class, the higher the smell density of a
test class is.

RQ5. By tracking smelly classes over time and investigating decreases in test
fixture smells, we see whether and how test fixture smells are resolved.



122 STRATEGIES FOR AVOIDING TEXT FIXTURE SMELLS DURING SOFTWARE
EVOLUTION 6.5

Figure 6.1: Implicit Setup Trends

6.5 Investigation of Test Fixture Smell Evolution
In this section, we detail our findings from the investigation of the five research
questions. Each subsection covers one of the research questions, with the excep-
tion of RQ4, to which we dedicate two subsections (Sections 6.5.4 and 6.5.5).

6.5.1 Evolution of Test Fixtures
Our analysis shows that the test fixture strategies used across the projects di↵er
greatly. In Jsoup, the developers completely refrained from using the implicit
setup mechanism available in JUnit. In Checkstyle and PMD, approximately
10% and 13% (respectively) of the test classes comprise an implicit setup. In
Voldemort and Azure, approximately 50% of the classes have an implict setup.
Just as the setup management styles di↵er across all five projects, the fixture
smells also di↵er, as illustrated in Fig. 6.3.

Setup Trends. To answer whether the setup strategies change over time (RQ1),
we looked at the trends for the presence of implicit setups. As can be seen in
Fig. 6.1, the usage pattern for the implicit setup changed. For example, in Azure,
the density of setups per class increased over time, and in PMD, it decreased.
On the other hand, apart from some severe fluctuations in density, the ratio stays
quite stable for all four projects. We excluded Jsoup because we did not encounter
a single implicit setup.

Setup Fluctuations. To understand the severe setup fluctuations, we manu-
ally investigated the changes between revisions that caused the fluctuations. In
Checkstyle, the drop in implicit setup usage at the beginning is because the code
base started with three test cases, each containing an implicit setup (i.e., 100%).
Over time, tests without an implicit setup were added, causing the percentage to
drop to 10%.

In PMD, the percentage of test classes that have an implicit setup drops at
the beginning. This is due to a simple structural change where 38 test classes
were removed by changing how methods were invoked. Before the change, many
of these test classes contained only one test method that invoked another method.



6.5 INVESTIGATION OF TEST FIXTURE SMELL EVOLUTION 123

Figure 6.2: Field Trends

After the change, this functionality is covered by the parent test class within the
setup, making 38 test classes obsolete. The commit log states: “code refactor-
ing: testAll() moved to parent, rules are now added in setUp() using addRule()”,
confirming our observation.

In Azure, the increase of implicit setups is due to the addition of six test
classes, all of which have an implicit setup. The commit log states: “table tests”
have been added.

Fields. As the fields of a class are a way to create a state accessible by all
methods of a test class, we also analyzed how many fields are declared within each
test class over time. In Checkstyle and PMD, even though only a small percentage
of the classes contain a setup, they still have a similar number of class fields as
compared with Azure and Voldemort (2.5 to 3 fields per test class). The only
exception is Jsoup, which has only two class fields within all test classes. The
trend of fields per test class, as illustrated in Fig. 6.2, reveals that in Voldemort,
the number of fields per test class continually increases, which is an indication
that the test classes become more complex. In the other three systems, there are
distinct events where the number of fields fluctuates and then stays quite stable

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 

 Azure  Checkstyle  JSoup  PMD  Voldemort 

Test Mavericks General Fixture Vague Header Dead Fields LCOTM Inline 

Figure 6.3: Test Smell Density Among Projects



124 STRATEGIES FOR AVOIDING TEXT FIXTURE SMELLS DURING SOFTWARE
EVOLUTION 6.5

over time. For PMD, the 38 deleted test classes were quite simple and did not
comprise fields, so their deletion led to an increased ratio of fields per test class.
In Azure, the added test classes (“table tests”) also led to an increase in fields
per class, which is indicative of an increase in complexity.

6.5.2 Discovery of Test Fixture Smell Trends
Lehman’s law of increasing complexity states that when a system evolves, its
complexity increases unless work is done to maintain or reduce it (Lehman, 1984).
Therefore, we expect that due to the increasing complexity of a given system –
the test fixture grows, and more test methods are placed within the same test
class – the potential for test fixture smells (such as the general fixture, LCOTM,
test mavericks and dead fields) increases.

Over the investigated periods of all five projects, the number of test classes
and test methods increased. On the other hand, the ratio of test methods per test
class stayed quite stable for PMD and Voldermort. In Azure and Checkstyle, the
number of tests per class increased slightly over time, and in JSoup we observed
the strongest increase. In Checkstyle, a peak occurred at the beginning because
the test e↵orts started within a single class that comprised up to 24 test methods,
and new test classes were introduced slowly. Even though the mean value for
tests per class seems small and stable across all systems, the inspection of the
dispersion of tests per class (see Fig. 6.4) shows, some test classes contain a
significantly larger number of test methods (30, 40 or even 80) than other test
classes. Over time, this imbalance grows.

Interestingly, the experiments revealed that even though test code becomes
more complex (more tests and more fields per test class), a general growth of test
fixture smells over time does not occur. As depicted in Fig. 6.5, the test fixture
smell trends often stay stable over time, and fluctuate greatly only at a distinct
point in time. Continual increases or decreases are exceptional, as in the case of
Voldemort. In the following sections, we take a closer look at how smells dispersed
in a system, and what causes the fluctuations in the smell trends.

6.5.3 Dispersion of Test Fixture Smells
Over the course of several revisions, we investigated how frequently smelly entities
occur per test class. We used histograms to visualize whether all classes contain
the same number of fixture smells or whether some classes are more prone to test
smells.

For general fixtures, test mavericks and obscure in-line setups, smells cluster
in a few classes. To illustrate the outcome, this paper shows the dispersion of
the general fixture smell for the first, middle and last analyzable revisions of each
project in Fig. 6.6. For all projects, some classes contribute a disproportionately
large number of general fixture methods, and over time, these classes accumulate
more general fixtures. In the last revision of PMD, three test classes contributed



6.5 INVESTIGATION OF TEST FIXTURE SMELL EVOLUTION 125

Figure 6.4: Histograms of Tests per Class for first and last Analyzable Revisions

45% of all general fixture methods (i.e., 2.5% of the classes), and 5.1% of the test
classes contributed 60.1% of the general fixtures. In the first analyzed revision,
three classes contributed 40% of the smells. A similar e↵ect can also be observed
for Azure, Checkstyle and Voldemort for the general fixture and test maverick
smells. Jsoup does not contain general fixture methods, but it has a strong tend-
ency for test mavericks to cluster. We can also observe that over time, the relative
number of test smells per class increases (i.e., the ratio of smelly entities to entities
per class).

On the other hand, dead fields did not cluster. As vague headers or a LCOTM
are either present or absent in a class, their distribution is not of interest.

Summary. Since some classes are more prone to test smells, such as general



126 STRATEGIES FOR AVOIDING TEXT FIXTURE SMELLS DURING SOFTWARE
EVOLUTION 6.5

Figure 6.5: All Smell Fixture Trends

fixture, test maverick and obscure in-line setup, refactoring activities can be dir-
ected to these classes. This shows that one can reduce the majority of test fixture
smells by cleaning a few smelly classes.



6.5 INVESTIGATION OF TEST FIXTURE SMELL EVOLUTION 127

Figure 6.6: Dispersion of General Fixtures for first, middle and last Analyzable Revi-
sions

6.5.4 Development of Test Fixture Smells

The smell trends do not show a general continual increase of smell densities over
time as expected, but considering the smell distribution, there is a tendency for
some classes to accumulate more smells (absolute and relative) over time than
others. We also see that some classes comprise an unproportionally large number
of test methods. The more test methods contained within a single class, the more
diverse the requirements for the test fixtures can become. Because of this, we
expect that test classes with a higher number of test methods have a higher smell
density than their smaller counterparts. Also, we expect that test classes with
more fields have a higher smell density than test classes with fewer fields.

To investigate these hypotheses, we used statistics and correlated the number
of test methods, or fields per class, with the percentage of test methods a↵ected
by a smell. We excluded Jsoup from this experiment as the project has few smells



128 STRATEGIES FOR AVOIDING TEXT FIXTURE SMELLS DURING SOFTWARE
EVOLUTION 6.5

and few fields. The results are given in Tables 6.2 and 6.3. We used the thresholds
defined by Hopkins (2000), where a correlation is considered moderate when the
value is higher than 0.3 (or lower than -0.3), and strong when the value is higher
than 0.5 (or lower than -0.5). For a correlation to be significant, the p-value of
the test needs to be below 0.01. This means the chance that the correlation is
due to random chance is less than 1 percent.

Data Points. We did not use each data point (i.e., all classes for each revision)
because the two variables correlated (i.e., test methods or fields, and a particular
smell factor) might be stable over time. This can cause certain combinations
(observations) to seem more likely than others. Therefore, we reduced the dataset
to include only unique combinations. For example, in case test class “TestA” has
three test methods and one general fixture method over a period of 10 revisions,
we include this incident only once in our data set, whereby we look for uniqueness
considering more than 21 di↵erent characteristics of a class.6 Further, as a class
without a field can not have a general fixture, LCOTM, test maverick, dead field
or vague header smell, we excluded classes without a field. For LCOTM, we also
only considered data points with a valid LCOTM value (i.e., LCOTM is undefined
when a class has a single method). Therefore, the results for LCOTM detail the
number of data points separately.

Test Methods. For three of the four projects, the results indicate that for test
smells such as general fixture, LCOTM, test maverick and obscure in-line setup,
a higher number of test methods per class correlates with a higher density of these
smells. For Checkstyle, the correlation cannot be shown as very few test smells
exist. We also investigated whether more dead fields exist in classes with more
test methods. This correlation does not hold for Checkstyle and PMD. For Azure
and Voldemort, the results show a weak negative correlation, indicating that with
a higher number of test methods per class, the dead fields density decreases.

Fields. The second characteristic we expect to find related to the smell density
of a class is the number of fields per class.

We observe a correlation between smell density and the number of fields for the
general fixture and LCOTM smells within the PMD and Azure systems, as listed
in Tables 6.2 and 6.3. A weak correlation also exists for a higher obscure in-line
setup density and fields in PMD and Voldemort. Azure is the only other system
which shows a correlation between a higher test maverick density and fields, and
a weak negative correlation for dead fields (i.e., more fields are correlated to a
lower dead field density).

We investigated why an increased number of fields also increases fixture smell
density for the PMD and Azure systems, and saw that this has to do with the
style of fixture management. For the majority of new test methods, developers
introduce a new dedicated field, and often there is one field for each test method.
This means that if new test methods are added to a class, it is very likely that

6Detailed information on the attributes covered for each class is outlined at http://
swerl.tudelft.nl/bin/view/MichaelaGreiler/TestEvoHound



6.5 INVESTIGATION OF TEST FIXTURE SMELL EVOLUTION 129

Tests per Class
Project N GF TM OI DF

Cor p Cor p Cor p Cor p

Voldemort 705 0.63 0 0.34 0 0.06 0.09 -0.41 0
PMD 268 0.51 0 0.56 0 0.37 0 0.05 0.40
Checkstyle 437 0.11 0.03 -0.09 0.06 Na Na -0.14 <0.001
Azure 118 0.51 0 0.40 0 0.48 0 -0.46 0

Fields per Class
Project N GF TM OI DF

Cor p Cor p Cor p Cor p

Voldemort 705 0.23 0 -0.15 0 0.32 0 0.24 0
PMD 268 0.72 0 0.23 <0.001 0.38 0 0.03 0.67
Checkstyle 437 -0.06 0.24 -0.04 0.43 Na Na 0.22 0
Azure 118 0.58 0 0.64 0 0.25 0.005 -0.40 0

Table 6.2: Statistical correlations between 1) no. of tests per class and smell increase
and 2) no. of fields per class and smell increase

Tests per Class
Project N LCOTM

Cor p

Voldemort 687 0.60 0
PMD 263 0.67 0
Checkstyle 430 0.11 0.02
Azure 118 0.48 0

Fields per Class
Project N LCOTM

Cor p

Voldemort 687 0.14 <0.001
PMD 263 0.55 0
Checkstyle 430 -0.02 0.74
Azure 118 0.57 0

Table 6.3: Statistical correlations between 1) no. of tests per class and increase in
LCOTM and 2) no. of fields per class and increase in LCOTM

all of them are general fixture methods, and the lack of cohesion between the test
methods increases further. With some test classes in PMD, either almost all test
methods are general fixtures, or they do not have anything to do with the fields
of the class, making them test mavericks. For example, in the “JDKVersionTest”,
all 33 test methods are general fixture methods, whereby each method uses very
few of the 37 fields declared. The LCOTM value in this class is as high as 0.99
(with 1 representing a completely noncohesive class).



130 STRATEGIES FOR AVOIDING TEXT FIXTURE SMELLS DURING SOFTWARE
EVOLUTION 6.5

6.5.5 Fluctuations in Test Fixture Smells
As is apparent from Fig. 6.5, fixture smell trends tend to change drastically at
certain points in time. We manually investigated code base changes that occurred
during the periods of severe smell trend changes to understand “Which changes
cause alterations in fixture smell trends” (RQ4).

Vague Header Smell. A drastic change in the vague header smell is seen in
Checkstyle alone. Checkstyle started out with a single test class that contains
a vague header (i.e., 100%). In the next revisions, several tests without vague
headers were added, until revision 433, where the smell continually increases due
to changes in the inheritance structure and refactoring activities.

Dead Field Smell. For the dead field smell, we analyzed the drastic changes
in Azure and Checkstyle. The main test fixture smell in Checkstyle is the dead
field smell, which drastically increases around revision 760-769 (as illustrated by
Fig. 6.7). The investigation of the changes between these revisions revealed that
all additional dead fields are inherited from a single base class that is extended by
almost all test classes (BaseCheckTestCase). In this test class, a helper method
was introduced, and one field (which was no longer needed) was forgotten and
remained in the class as legacy. In the commit log, the developer notes: “Added a
helper method to create a configuration for a check...”. This dead field remained
for the duration of our investigation. With Azure, a strong increase at revision

Figure 6.7: Dead Field Density in Checkstyle

39 is also due to dead fields inherited from one super class, which is extended by
six test classes.

General Fixture Smell. The main fluctuation in general fixture smell trends
can be seen in Azure. For Azure, this is also the predominant smell. The trend,
displayed in Fig. 6.8, shows two distinct decreases: at revision 40 (from over 60%
to less than 42%) and at revision 150. In revision 40, a drastic decrease occurred
because new test classes providing 87 tests (testing the Table client) were added.
The commit log shows “Table Client commit [...]”. With all these added tests,
only two new general fixture methods were introduced. Also at revision 150, 3
new test classes and 76 tests were added, most of them without general fixture
methods. In both cases, none of the already existing general fixtures have been



6.5 INVESTIGATION OF TEST FIXTURE SMELL EVOLUTION 131

resolved.

Figure 6.8: General Fixture Trend Azure

Test Maverick Smell. There are stronger fluctuations in the test maverick
density in PMD and Jsoup, as well as a drastic continual decrease of the test
maverick density in Voldemort.

In PMD, 12-14% of the methods are test mavericks, and the smell density
increases and then decreases again, as illustrated in Fig. 6.9. The first increases
are due to the aforementioned removal of several test classes and test methods,
and the introduction of vague headers in classes. The manual investigation of the
strong decrease around revision 900 reveals that the Java version was changed
during this period. The commit log contains the following comment: “Remove
support for Java 1.4 runtime. [...] changes are made to code which made checks
for running on a 1.4 JVM (found via searches).” This change causes a drop in
the number of test mavericks as the implicit setup of two test classes, used only
to set the Java version, was removed.

Figure 6.9: Test Maverick Trend in PMD

In Jsoup, test mavericks are caused by two classes that contain a vague header
setup.7 The fluctuations (illustrated in Fig. 6.10) occurred when the two classes
were introduced to the code base (revisions 20 and 80). Over time, more test
methods were added to these classes, which make no use of the fields of the
classes. Depending on whether more non-smelly tests are added, or more tests

7
ElementTest and UrlConnectTest



132 STRATEGIES FOR AVOIDING TEXT FIXTURE SMELLS DURING SOFTWARE
EVOLUTION 6.5

are added to these two classes, the smell density increases or decreases. In the
latest revision, these two classes cause over 60 test maverick methods.

Figure 6.10: Test Maverick Smell Trend in Jsoup

The test maverick density in Voldemort steadily decreases. This is because
fewer test mavericks are introduced over time, whereby the number of test meth-
ods increases (as illustrated in Fig. 6.11). The test maverick trend increases visible
in the graph are due to the introduction of a field (via a vague header) which is
only used by a few of the methods, and to a new test class which has a setup used
by only a few test methods. The decreases are because new fields are added to
classes with implicit setups, and previous test mavericks now use the fields.

Figure 6.11: Test Maverick Smell in Voldemort

LCOTM Smell. The LCOTM smell trends do not increase over time. In PMD,
the relative number of test classes su↵ering from the LCOTM smell even decreases.
On the other hand, when inspecting the smelly classes, we observe that their
LCOTM value does not decrease, but it either stays stable or increases. In Azure,
the more severe fluctuations in LCOTM trends are because of the drastic increase
of non-smelly classes.

Obscure In-line Setup Smell. In Azure, the number of obscure in-line meth-
ods increases (around revision 150). The majority of smelly methods come from
two new test classes (“CloudQueueTests” and “CloudBlobContainerTests”). The
other obscure in-line setups were added to an already existing class (“TableCli-
entTests”). In Voldemort, there is a continuous increase in the obscure in-line
setup smell, where a few classes, such as “RoutedStoreTest” and “AbstractRe-



6.6 INVESTIGATION OF TEST FIXTURE SMELL EVOLUTION 133

balanceTest”, accumulate more smells over time. Interestingly, in Jsoup, even
though the test setup was placed within test methods (or helper methods), not a
single test method su↵ers from the obscure in-line setup smell.

6.5.6 Test Fixture Smell Resolution

Previous research on test smells suggests that test smells do not get resolved unless
the test class or methods are deleted (Peters and Zaidman, 2012). We investigated
whether this phenomenon can also be observed in our subject systems and for test
fixture smells.

In general, we did not observe a major reduction of test smells. Several times,
test smells decreased because new non-smelly test methods were added, thus
reducing the percentage of smelly methods, as was seen with Azure. Other times,
changes to the code base caused the smells to be reduced. For example, changing
the Java version resolved many of PMD’s test mavericks. In the majority of cases,
we saw that fixture smells are either not resolved, or are only resolved by deletion.
Here, we will summarize the exceptional cases of smell resolution without deletion.

In Checkstyle, during a short period (revisions 442-444; also visible in Fig. 6.7),
an overly general inheritance structure causes several dead inherited fields and test
mavericks. The log states: “Refactored the tests to only use the Checker interface”
and “Refactoring the way the Checker is configured. Not happy with the current
approach - it was hack”. This change addresses the problem of the dead fields
and the test mavericks, and shows that the developers made an e↵ort to resolve
the smells by changing the inheritance structure and using the functionality of
the super class. Another time, test mavericks appear for a short time while the
helper method in “BaseCheckTestCase” is implemented.

In Voldemort, a large number of test mavericks are resolved over time (visible
in the continual decrease in the test mavericks trend) because new fields, which
are then used by test methods, were added to existing classes (also visible in
Fig. 6.2). For example, this occurs in test “ConsistentRoutingStrategyTest”.

In PMD, we see that some of the obscure in-line setups are resolved. For
example, in the test class “RuleSetFactoryTest”, an “Extract Method” refactor-
ing (Fowler, 1999) was performed, which resolved two in-line smells. In Voldemort,
in-line setups are also resolved from time to time. On the other hand, in Azure,
none of the obscure in-line methods are resolved.

General fixture, LCOTM and vague header smells are seldomly resolved in all
systems. Exceptions are cases where the final functionality of a test is not yet
implemented. For example, in Voldemort, developers added a test method that
comprised only a few statements and a “todo” comment. After some time, the
method was fully implemented and the general fixture resolved.



134 STRATEGIES FOR AVOIDING TEXT FIXTURE SMELLS DURING SOFTWARE
EVOLUTION 6.6

6.6 Discussion

6.6.1 Findings
Our study revealed many interesting findings about fixture management strategies
and their influence on test smells, as well as how fixture strategies and smells
evolve during the lifetime of several open source projects. In summary, our in-
vestigation of test fixture smells showed that:

the style of fixture management varies greatly between projects;
the projects’ test suites also su↵er from di↵erent patterns of test fixture
smells;
the number of test methods per test class correlates with the density of test
fixture smells;
more fields in a class do not necessarily correlate with a higher test fixture
smell density;
drastic increases in test smells are often caused by structural changes (such
as refactorings with forgotten legacy functionality);
once introduced, test smells tend to stick around and do not get resolved;
most likely, fixture smells disappear because the test class or test method is
deleted.

6.6.2 Implications for Automated Test Fixture Smell Detection
As we saw from a previous study (Greiler et al., 2013a), developers are concerned
with the quality of their test code and see test fixture smells as potential problems.
On the other hand, they are under pressure to develop production code, not to
improve test code. The developers indicated that in terms of improving test code,
they look for “low hanging fruit”, i.e., easy changes that do not involve major
refactoring. The developers also indicated that they want to be notified when
smells are introduced. We believe that the findings of this study can be used to
design smell alerting mechanisms for developers evolving test code.

We saw that the test fixture management strategy greatly varies between
projects, and that projects stay with the style they started with. For project
leads, this means that they have to make conscious decisions at the beginning,
and know which test fixture smells are more likely to occur as a consequence of
the chosen fixture management strategy.

Also, even though some classes become smellier over time, we saw that test
smell trends do not continually increase. This suggests that developers eventually
learn the right strategies for writing test cases for a given system, and that new
classes tend to be less smelly than old ones, which is in line with the information
developers gave in the interviews (Greiler et al., 2013a).

Further, we also saw that simple structural changes in test classes can lead to
both a drastic increase as well as a decrease in test fixture smells. First, because
small changes can have a major impact on smell development, we believe getting



6.6 DISCUSSION 135

developers’ attention when they are about to introduce test smells is an important
first step to smell avoidance. Second, as test smells tend to accumulate in a few
classes, refactoring these classes can greatly reduce test fixture smells.

Further, as the number of test methods per class impacts the smelliness of test
code, developers should reconsider the current practice of grouping test methods
within a class. Alerting developers about the lack of cohesion of test methods
might be a first step in reducing class size.

6.6.3 Strategies and Recommendations
Based on the observations and findings of this study, we defined the following
strategies and recommendations for smell avoidance:

Keep test classes small (and therefore coherent), by reducing the number of
test methods within a class.
Keep inheritance structures flat, and also limit the scope of super classes
(e.g., do not implement one super test class that provides functionality for
all base test classes).
Use composition instead of inheritance to provide test classes with helper
functionality.
Create data classes that provide test inputs to avoid overloading test classes
with field declarations that are only used for a single test method. This
improves performance and understandability of test classes.
Be aware that declaring fields in the header may impact tests in terms of
understandability and test performance.
Reconsider the “one test class per class” organization in case test methods
within a single test class require diverse states and configurations for the
system under test.
Carefully consider the consequences of the chosen fixture strategies and the
impact those decisions will have on the projects, as this is not likely to
change.

6.6.4 Threats to Validity
In terms of generalizability, our current implementation only works for Java-based
systems that use JUnit or TestNG test frameworks and have automatic build files
(i.e., Maven or ANT) available. On the other hand, it should be easy to adjust
our tool’s build process so that developers using other means to build systems can
analyze their history. Further, we believe that this technique is not only easily
transferable to other xUnit testing frameworks, but also to other languages. Also,
our evaluation was limited to five software systems. However, we chose systems
that are well known, publicly accessible and actively developed.

With respect to internal validity, the analysis may be incomplete or contain
bugs. To conquer this threat, we implemented multiple test cases. Also, the
extensive manual inspection of the systems under study confirmed our confidence



136 STRATEGIES FOR AVOIDING TEXT FIXTURE SMELLS DURING SOFTWARE
EVOLUTION 6.8

in the correctness and precision of the analysis. For future work, we plan to assess
the accuracy of the results in additional case studies.

We also had to make some changes to the systems under study. For Checkstyle,
a wide range of revisions had a non compilable test class checked in8. To be able
to compile and analyze the rest of the tests, we deleted this class in case it failed
to compile. For several revisions in PMD, the Maven build file did not link to the
correct dependencies. So, we updated the dependency information in order to be
able to analyze a wide range of revisions.

6.7 Related Work
As discussed in Section 6.2, test smells have been studied previously, with some
research e↵orts focusing on the automatic detection of test smells. Among them,
Van Rompaey et al. (2007) tried to detect General fixture and Eager test test
smells by means of metrics . Subsequently, they described a tool which used well-
known software metrics to predict a broader variety of potential problems and test
smells (Breugelmans and Van Rompaey, 2008). Our study of test smells di↵ers in
several ways. First, we focus on test fixture management and analyze test code for
specific fixture problems relevant in practice. We also provide concrete refactoring
suggestions for developers. In contrast to our work, Borg and Kropp (2011)
described automated refactoring for acceptance tests based on the FIT framework.
To the best of our knowledge, fixture-related test smells and refactoring have not
been studied so far.

Co-evolution of software and test code has been investigated by Zaidman et al.
(2011). Pinto et al. (2012) investigated the evolution of test code in order to better
understand how test repair tooling can assist developers during test maintenance.

Galli et al. (2004a) presented a taxonomy of (Smalltalk) unit tests in which
they distinguish tests based on, for example, the number of test methods per
method under test, and whether or not exceptions are taken into account.

In general, code and design smells have been researched in previous work. For
example, Moha et al. (2010) outline a method called DECOR and its implement-
ation to detect several code and design smells and evaluate their technique in
several case studies. Lanza and Marinescu use metrics to identify classes that
might have design flaws (Lanza and Marinescu, 2006; Marinescu, 2001). The
metrics and smells presented in this paper address properties of code exclusively
present in test code, i.e., the creation and tear down of the test fixtures.

6.8 Conclusion
In this paper, we investigated the evolution of test fixture smells so that we
could discover the most beneficial time to alert developers about smell changes,

8
LocalizedMessageTest.java.



6.8 CONCLUSION 137

and to learn which software changes lead to test smell increases. Therefore, we
investigated when and how test fixture smells are introduced, and which roles
the setup strategies play. Our findings indicate that test fixture smells do not
continually increase over time, even though system complexity increases. There
is a correlation between the number of tests within a class and smell density.
An important insight is the clustering e↵ect of test smells; the few classes that
contribute the majority of test smells are the classes developers should be made
aware of.

Our contributions in this paper are:
1. an implementation of a tool which supports the mining of repositories;
2. a technique (and implementation) to analyze several revisions of a software

system for fixture-related test smells, and to understand the trends in smell
evolution;

3. an investigation of test fixture smell evolution in five well-known open source
systems;

4. strategies and guidance on how to avoid test fixture smells.
In future work, we plan to integrate the TestEvoHound tool in the continuous

integration environment in order to give immediate feedback to developers based
on the findings of this paper.





Chapter7
Conclusion

7.1 Contributions
In this dissertation, we investigated the testing practices used to test plug-in-based
systems, revealed several challenges during integration testing, and developed and
evaluated three techniques to assist developers during test suite comprehension
and maintenance. In particular, the following contributions have been made:

In Chapter 2, we presented an in-depth and systematic investigation of the
testing practices and challenges within a plug-in community (i.e., Eclipse);

we revealed how plug-in-based systems are tested in practice;

we identified several barriers hindering the adoption of automated integra-
tion and system testing; and

we highlighted the role of the community, which serves as compensation
strategy for limited testing activities.

In Chapter 3, we distilled several information needs developers have during
test suite comprehension for plug-in systems;

we developed a static and dynamic analysis technique that provides the
developer with an abstraction of the system under test and its test suites,
by recovering five architectural views which highlight the integration with
other plug-ins and how this integration is tested;

we provided an implementation of that technique in a tool called Eclipse
Test Suite Exploration (ETSE) tool; and

we conducted an evaluation of this technique based on case study research,
showing its applicability, scalability and precision.

139



140 CONCLUSION 7.2

In Chapter 4, we presented a dynamic analysis technique that automatically
derives similarity-based relations between test cases, to support developers
during test suite maintenance and comprehension tasks;

we performed an assessment of the usefulness of the similarity-based rela-
tions based on two case studies; and

we provided an implementation of this technique in a framework for mining
test connections called Test Similarity Correlator.

In Chapter 5, we presented five new test smells related to test fixtures;

we developed a static analysis technique to automatically detect six test
fixture smells;

we provided an implementation of the technique in a tool called TestHound ;

based on three industrial-strength case studies, we showed that test fixture
smells occur in practice; and

provided an evaluation involving 13 developers that showed that the tech-
nique is helpful to understand, reflect, and adjust the test fixture.

In Chapter 6, we presented an investigation of the evolution of test fixture
smells based on five case studies;

we showed that test fixture smells often emerge at the same time and cluster
in few test classes; and

based on these findings, we derived several strategies to avoid test fixture
smells.

7.2 Research Questions Revisited
In this dissertation, we investigated four overarching research questions, whereby
each question was addressed by two di↵erent chapters. Let us revisit each of the
four overarching research questions of this thesis here.

What makes testing of modular and dynamic systems challenging?
Modular and dynamic software systems, such as plug-in systems, can be com-
plex compositions, integrating multiple plug-ins from di↵erent developers into
one product, and thus, raising concerns about the compatibility of their compon-
ents (Pohl and Metzger, 2006; Rehmand et al., 2007; Weyuker, 1998). Incompat-
ibility, be it because of combinations of plug-ins or versions, can be hard to strive
against, and may restrict the benefits plug-in systems o↵er. Within two separate
studies we were able to identify several challenges developers face when testing
plug-in systems. Summarized, those challenges are:



7.2 RESEARCH QUESTIONS REVISITED 141

Plug-in systems are conglomerates of several di↵erent plug-ins, with di↵erent
owners. This makes the responsibility for integration or system testing is less
clear, and the lack of ownership of the overall system leads to a test maintenance
overhead. In plug-in systems, functionality can change after deployment, which
makes testing a challenge as end user requirements are often unclear or even
unknown. Integration and system test e↵orts are often limited to the a small set
of well-known combinations of plug-ins. Several interviewed developers express
that testing many combinations of plug-ins, versions, libraries, and operating
systems is sheer impossible, and that they often only cover the latest versions
of their plug-in dependencies. They also express to be reluctant to update their
dependencies as this would require them to perform extensive manual testing.

Challenges developers face during plug-in testing are not restricted to creation
and performance of testing, but include also comprehension of plug-in test code
and understanding how well tests cover the system under test. During test ex-
ecution of a plug-in test, hundreds of plug-ins and their extensions are loaded.
Keeping track of which plug-ins and extensions are currently active in a test en-
vironment is a challenging task and an information need. Also, developers express
the need to understand how test suites and test cases should test the extensions
of foreign plug-ins. This can be challenging, starting with the need to be able
to locate foreign tests that address certain extensions, services or plug-ins. As
plug-in test suites often comprise a substantial amount of test code, test suites
themselves are modularized and nested. This nesting and modularization of test
suites makes it di�cult to understand what is actually tested by which sub-test
suite, and how the test environment has been set up.

In general, our studies revealed that integration testing per se is experienced
as di�cult by developers. Why this is the case was the focus of the second over-
arching research question:

What makes integration testing more di�cult than unit testing?
Our investigation revealed that while there is a rich body of literature on unit
testing (Gamma and Beck, 2003), literature on integration and system testing for
plug-in-based systems is scarce. This unavailability of plug-in testing knowledge
makes it hard for beginners and less experienced developers and testers to test
plug-in based systems. Another pain point is the long test execution time of in-
tegration, GUI, or system tests. Developers report that due to the long execution
time their work flow is disrupted, and their work performance decreases. Also,
whereby setting-up a test environment for unit testing requires minimal e↵ort as
standard tooling (e.g., JUnit) exists, for integration, system, and GUI testing,
the situation is di↵erent. Developers report that already setting up automated
builds that execute integration tests that require the plug-in framework is di�cult
and not well supported. Developers also report that tool support for integration,
system or GUI testing, for example the Plug-in Development Environment tooling
and test infrastructure, does not meet their requirements. All of these technical
hurdles have the e↵ect that testing beyond unit scope is experienced as “annoy-



142 CONCLUSION 7.2

ing”, “distracting”, and “painful”.
Another di↵erence between integration and unit tests surfaces during test

design. Designing integration tests is challenging as developers have to account
for the proper coverage of several combinations of plug-ins, but also third party-
libraries, di↵erent operating systems or containers the system will have to run
with, and also account for several versions of each of them. Selecting the right
combinations is non trivial, and neither is the task to understanding which com-
binations are already covered by a test suite. Prompted by these challenges we
wanted to provide developers with better tool support for integration testing
activities, as visible in the third research question.

How can we support developers during understanding high level tests?
Through the challenges it was clear that tool support to understand high level
tests, such as integration or system tests is needed. During interviews with 25
developers we were able to distill several information needs developers have when
confronted with test suite comprehension. For example, developers explain that
they have to understand what is tested, what is left out, and how the integra-
tion with other components is covered by tests. Whereby, the “what” can stand
for components, services, plug-ins, or extension-points. Based on the informa-
tion needs identified, we developed two distinct techniques that assist developers
during understanding of high level test.

First, we developed five architectural views that can be used to understand
test suites for plug-in-based systems from an integration perspective. The first
view, the Plug-in Modularization View provides the developer with structural
and organizational awareness with respect to the code-dependencies of plug-ins.
Equipped with this basic structural knowledge, the second step is the analysis
of the extension relations between plug-ins and the way they are exercised by
the test suite, realized through the Extension Initialization View. The Extension
Usage and Service Usage Views complete the picture by providing the developer
with insight in the way the test suite exercises the actual methods involved in
the extensions and services. Finally, the Test Suite Modularization View helps
to relate this information to the di↵erent test suites executed. All these views
are recovered from existing systems by means of static and dynamic analysis, and
integrated in the Eclipse IDE. Note that, while some of the views are specifically
developed for plug-in systems, the views can be adjusted to reflect the test suites
and extension mechanism of other modular and dynamic systems such as service-
oriented systems.

Based on an empirical study of the use of these views in several open source
systems we could show that the technique is accurate and scales well to the system
at hand. Further, we performed an initial user study with three developers and
presented the tool to approximately 70 practitioners during the Eclipse Testing
Day.1 The overall responses were positive, and all of the three study participants

1
http://wiki.eclipse.org/Eclipse_Testing_Day_2011



7.2 RESEARCH QUESTIONS REVISITED 143

expressed that the tool gives them a new perspective on plug-in test suites and
that the visualizations are very useful.

The second technique, is a combination of dynamic analysis and the shared
word count metric to establish relations between end-to-end and unit tests. These
relations reflect the similarity between tests, whereby for example for one end-
to-end tests, all unit tests are ranked based on their similarity (with the most
similar one on top). In this study, we could show that the automatic derived rela-
tions reflect very well the similarity of the functionality covered by the test, and
the rankings and relations resonate well with the understanding of similarity of
a human expert. The technique could identify di↵erent states the system was in
during testing, di↵erentiated well between di↵erent objects involved in tests, and
handle mocking activities. Based on the rankings, users can not only see which
tests cover the same functionality, but are also able to identify misnamed tests
and be aware of forgotten functionality. The evaluation of the technique shows
that these rankings are suitable for developers unfamiliar with a test suite to get
acquainted with the test code, and in general can support developers in their test
suite maintenance activities.

How can we support developers during test maintenance?
Maintenance of test suites can become very costly, taken into account that nowa-
days software developers rely on extensive automated test suites, which can com-
prise a substantial amount of code. Therefore, long term success of automated
testing is highly influenced by the maintainability of the test code (Meszaros,
2007). To support easier maintainability of a system, developers should follow
best practices in style, such as that test methods should be clearly structured,
well named and small in size, and code duplication should be avoided (Freeman
and Pryce, 2009). Counterparts of best practices are so called smells, indicating
poor solutions to recurring implementation and design problems (Fowler, 1999),
or also called test smells if applied to test code (van Deursen et al., 2001).

To support developers during test suite maintenance, we investigated one spe-
cific, but very important part of a test: the code that initializes and configures
the system under test (SUT), and puts the SUT in the right state required by
the test. In line with Meszaros (2007), we refer to this part of a test as the test
fixture. Especially for integration or system level tests, this part can contribute a
substantial amount of the overall test code, and developers have to make conscious
decisions about how to structure their fixture code and adjust their strategies dur-
ing the evolution of the test code, otherwise test performance, understandability
and maintainability are jeopardized.

In the course of this thesis, we investigated fixture related test smells, whereby
we enhanced the set of test smells with three new test fixture smells. Furthermore,
we designed a static analysis technique that can automatically detect six test
fixture smells, and support developers in understanding and resolving the smells
encountered. In two consecutive studies, we could show that test fixture smells
occur in practice, and that developers are concerned about them. During a study



144 CONCLUSION 7.3

in which 13 developers participated, we could show that our tool TestHound,
which implements the technique, is experienced as helpful by developers. As
developers expressed the need to have continuous and immediate feedback on test
fixture smells, we further investigated the evolution of test fixture smells to better
understand how to avoid them, and to identify how a tight tool integration would
be most beneficial. This study revealed that test fixture smells do not continually
increase, but, at certain points in time, several emerge at the same time. Also, test
fixture smells have the tendency to cluster in few particular smelly test classes.
Test classes with a large number of test methods are particularly susceptible for
test smells. Based on these findings, we developed several recommendations for
test fixture smell avoidance, such as keeping test classes small and coherent, and
using composition instead of inheritance to provide helper functionality to test
classes.

In general, our technique to detect test fixture smells, and our findings on test
smell avoidance can support developers to make or keep test code more compre-
hensible, maintainable, and to increase test performance.

7.3 Open Issues and Future Work
Testing practices. In this dissertation, we investigated the testing practices for
plug-in-based systems, whereby we targeted one specific community, i.e., the Ec-
lipse community. We assume that an expansion of this investigation to other
plug-in communities and system, such as the Mozilla or Adobe plug-in system
and community would be interesting, to reveal specific di↵erences and common-
alities of these communities. Also, in our work we focused on techniques and
tools available for the Eclipse IDE. As many other widely used testing tools exist,
such as the HP Quality center, Microsoft Test Manager, IBM Rational Functional
Tester, or Selenium, an investigation of to which degree a change in tooling also
impacts the adopted test practices is of interest. Subsequent e↵orts to reveal
testing practices in other communities already exist, as for example Pham et al.
(2013) investigate how social coding sites such as GitHub influence the testing
practices.

Test quality. While, most of the techniques and tools developed in this dissertation
focus on test comprehension, they also often gave an idea of the quality of a given
test suite. We assume that an investigation of the extend in which the techniques
can be useful to assess test quality might be beneficial. For example, the ETSE
tool highlights the degree to which the integration between several plug-ins of
the system under test has been covered in the test run. We can see that this
information might be a base to derive adequacy criteria reached by a particular
test suite. Further, we envision that the technique to establish similarity relation
between test cases can be used to reveal blank spots in a test suite, as well as
redundant test cases.



7.3 OPEN ISSUES AND FUTURE WORK 145

Dynamic Reorganizations of Test Suites. In this thesis, we concentrated on analyz-
ing test fixtures, as well as test similarities covering the main test functionality to
support developers during their test maintenance tasks. In future work, we en-
vision to dynamically generate views on test suites. Such views should allow the
developers to dynamically group test cases together that share specific properties,
such as grouping tests that need the same test fixture, that test the same feature,
or that need a comparable amount of time to execute.

Nowadays, developers have to group and organize test cases manually, for
example by placing test methods within the same class, or defining test suite
groupings. Unfortunately, to this point, developers can only select one specific
type of organization per test or test suite, whereby, each organization has specific
advantages and disadvantages with respect to test code comprehension, perform-
ance of test executions, and reusability of test code, depending on the task at
hand. This implies having to deal with the disadvantages of a given test organ-
ization. Based on the insights gathered in previous studies, we envision that by
combining our dynamic analysis techniques for measuring test case similarity, and
our static analysis technique for test fixture analysis with software reconnaissance
we are able to allow dynamic test reorganization.

Test Fixtures of Plug-in Tests. In this dissertation, we looked at test fixtures of
unit tests in general. Plug-in tests are of interest for this research direction, as
they often have many requirements on the state of the system under test. For
example, the Plug-in Development Environment in Eclipse provides the developer
with a specific plug-in testing framework to write tests, the PDE tests. The test
runner of the PDE tests does not only need Java, but also requires the plug-in
framework (i.e., the Eclipse framework) to be started. Furthermore, di↵erent
tests then require a particular set of plug-ins to be loaded, before testing can
start. In this dissertation, several of the systems under study have been plug-in
based systems, nevertheless, we envision that future research tailors the technique
for automated detection of test fixture smells to plug-in based systems. In such a
context, the loading of plug-ins or third-party libraries that are unnecessary for
the test execution can be seen as another form of a test fixture smell.

Bridging Research and Practice. In this dissertation, we sought to establish a close
connection between industry and academia in order to

1. be aware of the problems faced in practice,

2. to reflect whether our solutions have the potential to be suitable for industry,
and

3. to allow a knowledge transfer from academia to industry and vice versa.

As discussed in the introduction (Section 1.3), to ensure a connection to prac-
tice, we studied open and closed source systems, and adopted research methods



146 CONCLUSION 7.3

such as case study research, user studies and grounded theory. To establish con-
tacts to industry, we participated in industry events and used social media (such
as blogging and micro blogging) to communicate our (preliminary) results and
research directions. As soon as we were able to arouse the interest of companies
or individuals they were also willing to allocate time to participate in our studies.
Involving industry in our studies was a time-consuming task. Next to establish-
ing connections and communicating intents and results, following for example a
grounded theory approach rigorously is a major investment of time. Nevertheless,
we believe these e↵orts are justified, as they constitute an important means to
establish connections between software engineering research and practice. Inde-
pendent from the research topics that will follow, bridging research and practice
will remain di�cult, yet will become increasingly important. As Albert Einstein
stated: “In theory, theory and practice are the same. In practice, they are not.”



Bibliography

Adolph, S., Hall, W., and Kruchten, P. (2011). Using grounded theory to study
the experience of software development. Empirical Softw. Eng., 16(4):487–513.

Beck, K. (2002). Test Driven Development: By Example. Addison-Wesley.

Beizer, B. (1990). Software testing techniques (2nd ed.). Van Nostrand Reinhold
Co., New York, NY, USA.

Binder, R. V. (1999). Testing Object-Oriented Systems: Models, Patterns, and
Tools. Addison-Wesley Professional.

Borg, R. and Kropp, M. (2011). Automated acceptance test refactoring. In
Proceedings of the 4th Workshop on Refactoring Tools (WRT), pages 15–21.
ACM.

Breugelmans, M. and Van Rompaey, B. (2008). TestQ: Exploring structural
and maintenance characteristics of unit test suites. In 1st Int’l Workshop on
Academic Software Development Tools and Techniques.

Bryant, A. and Charmaz, K., editors (2007). The SAGE Handbook of Grounded
Theory. SAGE.

Cabral, I., Cohen, M. B., and Rothermel, G. (2010). Improving the testing and
testability of software product lines. In Proceedings of the 14th international
conference on Software product lines: going beyond, SPLC’10, pages 241–255,
Berlin, Heidelberg. Springer-Verlag.

Chatley, R., Eisenbach, S., Kramer, J., Magee, J., and Uchitel, S. (2004). Predict-
able dynamic plugin systems. In 7th International Conference on Fundamental
Approaches to Software Engineering (FASE), pages 129–143. Springer-Verlag.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented
design. IEEE Trans. on Softw. Engineering, 20(6):476–493.

147



148 BIBLIOGRAPHY

Chikofsky, E. and Cross, J.H., I. (1990). Reverse engineering and design recovery:
a taxonomy. Software, IEEE, 7(1):13 –17.

Corbi, T. A. (1989). Program understanding: challenge for the 1990’s. IBM Syst.
J., 28(2):294–306.

Corbin, J. M. and Strauss, A. (1990). Grounded theory research: Procedures,
canons, and evaluative criteria. Qualitative Sociology, 13:3–21.

Cornelissen, B., Moonen, L., and Zaidman, A. (2008). An assessment methodo-
logy for trace reduction techniques. In Proc. Int’l Conf. Software Maintenance
(ICSM), pages 107–116. IEEE CS.

Cornelissen, B., van Deursen, A., Moonen, L., and Zaidman, A. (2007). Visu-
alizing testsuites to aid in software understanding. In Proceedings of the 11th
European Conference on Software Maintenance and Reengineering (CSMR’07),
pages 213–222. IEEE Computer Society.

Cornelissen, B., Zaidman, A., van Deursen, A., Moonen, L., and Koschke, R.
(2009). A systematic survey of program comprehension through dynamic ana-
lysis. IEEE Transactions on Software Engineering, 35(5):684–702.

Creswell, J. W. and Vicki (2006). Designing and Conducting Mixed Methods
Research. Sage Publications, Inc, 1 edition.

Dagenais, B. and Robillard, M. P. (2010). Creating and evolving developer doc-
umentation: understanding the decisions of open source contributors. In SIG-
SOFT FSE, pages 127–136.

Demeyer, S., Ducasse, S., and Nierstrasz, O. (2003). Object-oriented reengineering
patterns. Morgan Kaufmann.

Evans, E. (2003). Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 1. a. edition.

Feathers, M. (2004). Working E↵ectively with Legacy Code. Prentice Hall.

Fowler, F. J. (2002). Survey Research Methods. Sage Publications, Thousand
Oaks, CA.

Fowler, M. (1999). Refactoring: improving the design of existing code. Addison-
Wesley.

Freeman, S. and Pryce, N. (2009). Growing Object-Oriented Software, Guided by
Tests. Addison-Wesley Professional, 1st edition.

Galli, M., Lanza, M., and Nierstrasz, O. (2004a). Towards a Taxonomy of SUnit
Tests? In International Smalltalk Conference.



BIBLIOGRAPHY 149

Galli, M., Lanza, M., Nierstrasz, O., and Wuyts, R. (2004b). Ordering broken
unit tests for focused debugging. In Int’l Conf. Softw. Maintenance (ICSM),
pages 114–123. IEEE.

Gamma, E. and Beck, K. (2003). Contributing to Eclipse: Principles, Patterns,
and Plugins. Addison-Wesley.

Garousi, V. and Varma, T. (2010). A replicated survey of software testing prac-
tices in the Canadian province of Alberta: What has changed from 2004 to
2009? J. Syst. Softw., 83:2251–2262.

Glaser, B. and Strauss, A. (1967). The discovery of Grounded Theory: Strategies
for Qualitative Research. Aldine Transaction.

Golafshani, N. (2003). Understanding reliability and validity in qualitative re-
search. The Qualitative Report, 8(4):597–606.

Greiler, M., Deursen, A. v., and Storey, M.-A. (2012a). Test confessions: a study
of testing practices for plug-in systems. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages 244–254, Piscataway,
NJ, USA. IEEE Press.

Greiler, M., Gross, H.-G., and van Deursen, A. (2010). Understanding plug-
in test suites from an extensibility perspective. In Proceedings 17th Working
Conference on Reverse Engineering, pages 67–76. IEEE.

Greiler, M. and van Deursen, A. (2012). What your plug-in test suites really test:
An integration perspective on test suite understanding. Empirical Software
Engineering, pages 1–42.

Greiler, M., van Deursen, A., and Storey, M.-A. (2011). What Eclipsers think
and do about testing: A grounded theory. Technical Report SERG-2011-010,
Delft University of Technology.

Greiler, M., van Deursen, A., and Storey, M.-A. (2013a). Automated detection of
test fixture strategies and smells. In Proceedings of the International Conference
on Software Testing, Verification and Validation.

Greiler, M., van Deursen, A., and Zaidman, A. (2012b). Measuring test case sim-
ilarity to support test suite understanding. In Proceedings of the International
Conference on Objects, Models, Components, Patterns, pages 91–107. Springer.

Greiler, M., van Deursen, A., Zaidman, A., and Storey, M.-A. (2013b). Strategies
for avoiding text fixture smells during software evolution. In Working Confer-
ence on Mining Software Repositories, to appear.

Gubrium, J., Holstein, J., Marvasti, A., and McKinney, K., editors (2012). The
SAGE Handbook of Interview Research. SAGE Publications, Inc.



150 BIBLIOGRAPHY

Harrison, W. (2006). Eating your own dog food. IEEE Softw., 23:5–7.

Hartmann, J., Imoberdorf, C., and Meisinger, M. (2000). UML-Based integration
testing. In International Symposium on Software Testing and Analysis, pages
60–70. ACM.

Henderson-Sellers, B. (1996). Object-oriented metrics: measures of complexity.
Prentice-Hall.

Hermans, F., Pinzger, M., and van Deursen, A. (2011). Supporting professional
spreadsheet users by generating leveled dataflow diagrams. In Gall, H. and
Medvidovic, N., editors, Proceedings 33rd International Conference on Software
Engineering (ICSE 2011). ACM.

Hindle, A., Godfrey, M. W., and Holt, R. C. (2010). Software process recovery
using recovered unified process views. In Proceedings 26th IEEE International
Conference on Software Maintenance (ICSM 2010), pages 1–10. IEEE Com-
puter Society.

Hopkins, W. G. (2000). A new view of statistics. Internet Society for Sport
Science.

Hurdugaci, V. and Zaidman, A. (2012). Aiding developers to maintain developer
tests. In Conf. Softw. Maintenance and Reengineering (CSMR), pages 11–20.
IEEE CS.

Jorgensen, P. C. and Erickson, C. (1994). Object-oriented integration testing.
Communications of the ACM, 37(9):30.

Kagdi, H., Collard, M. L., and Maletic, J. I. (2007). A survey and taxonomy of
approaches for mining software repositories in the context of software evolution.
J. Softw. Maint. Evol., 19(2):77–131.

Koochakzadeh, N. and Garousi, V. (2010). Tecrevis: a tool for test coverage and
test redundancy visualization. In Proceedings of the 5th international academic
and industrial conference on Testing - practice and research techniques, TAIC
PART’10, pages 129–136, Berlin, Heidelberg. Springer-Verlag.

Lanza, M. and Marinescu, R. (2006). Object-Oriented Metrics in Practice - Using
Software Metrics to Characterize, Evaluate, and Improve the Design of Object-
Oriented Systems. Springer.

Lee, J., Kang, S., and Lee, D. (2012). A survey on software product line testing.
In Proceedings of the 16th International Software Product Line Conference -
Volume 1, SPLC ’12, pages 31–40, New York, NY, USA. ACM.

Lehman, M. M. (1984). On understanding laws, evolution, and conservation in
the large-program life cycle. Journal of Systems and Software, 1:213–221.



BIBLIOGRAPHY 151

Li, W. and Henry, S. (1993). Object-oriented metrics that predict maintainability.
Journal of Systems and Software, 23(2):111–122.

Mariani, L., Papagiannakis, S., and Pezze, M. (2007). Compatibility and regres-
sion testing of cots-component-based software. In Proceedings of the 29th In-
ternational Conference on Software Engineering, ICSE ’07, pages 85–95, Wash-
ington, DC, USA. IEEE Computer Society.

Marinescu, R. (2001). Detecting design flaws via metrics in object-oriented sys-
tems. In Proc. of the Int’l Conf. on Technology of Object-Oriented Languages
and Systems (TOOLS), pages 173–182. IEEE CS.

Marquardt, K. (1999). Patterns for plug-ins. In Proceedings 4th European Con-
ference on Pattern Languages of Programs (EuroPLoP), page 37pp, Bad Irsee,
Germany.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall, 1 edition.

Mayer, J., Melzer, I., and Schweiggert, F. (2003). Lightweight plug-in-based
application development. In International Conference NetObjectDays, NODe
2002, pages 87–102. Springer-Verlag.

Memon, A., Porter, A., and Sussman, A. (2010). Community-based, collaborative
testing and analysis. In Proceedings of the FSE/SDP workshop on Future of
software engineering research, FoSER ’10, pages 239–244, New York, NY, USA.
ACM.

Mens, T., Fernández-Ramil, J., and Degrandsart, S. (2008). The evolution of
eclipse. In Proceedings 24th IEEE International Conference on Software Main-
tenance (ICSM), pages 386–395. IEEE.

Meszaros, G. (2007). xUnit Test Patterns: Refactoring Test Code. Addison-
Wesley.

Mikhajlov, L. and Sekerinski, E. (1998). A study of the fragile base class prob-
lem. In Proceedings European Conference on Object-Oriented Programming
(ECOOP), pages 355–382. Springer-Verlag.

Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002). Two case studies of open
source software development: Apache and Mozilla. ACM Trans. Softw. Eng.
Methodol., 11:309–346.

Moha, N., Guéhéneuc, Y.-G., Duchien, L., and Le Meur, A.-F. (2010). Decor:
A method for the specification and detection of code and design smells. IEEE
Trans. on Softw. Engineering, 36(1):20–36.



152 BIBLIOGRAPHY

Muccini, H. and Hoek, A. V. D. (2003). Towards testing product line architectures.
In In: International Workshop on Testing and Analysis of Component Based
Systems, pages 111–121.

Müller, H. A., Jahnke, J. H., Smith, D. B., Storey, M.-A., Tilley, S. R., and Wong,
K. (2000). Reverse engineering: a roadmaps. In Proceedings of the Conference
on The Future of Software Engineering, ICSE ’00, pages 47–60, New York, NY,
USA. ACM.

Neukirchen, H. and Bisanz, M. (2007). Utilising code smells to detect quality
problems in ttcn-3 test suites. In Proc. of the Int’l Conf. on Testing of Com-
municating Systems and the Int’l Workshop on Formal Approaches to Testing
of Software (TestCom/FATES), pages 228–243. Springer.

Ng, S. P., Murnane, T., Reed, K., Grant, D., and Chen, T. Y. (2004). A prelim-
inary survey on software testing practices in Australia. In Proceedings of the
2004 Australian Software Engineering Conference, ASWEC ’04, pages 116–,
Washington, DC, USA. IEEE Computer Society.

Onwuegbuzie, A. J. and Leech, N. L. (2007). Validity and qualitative research:
An oxymoron? Quality & Quantity, 41(2):233–249.

Peters, R. and Zaidman, A. (2012). Evaluating the lifespan of code smells using
software repository mining. In Proc. European Conf. on Software Maintenance
and Reengineering (CSMR), pages 411–416. IEEE.

Pezzè, M. and Young, M. (2008). Software Testing and Analysis. Wiley.

Pham, R., Singer, L., Liskin, O., Figueira Filho, F., and Schneider, K. (2013).
Creating a Shared Understanding of Testing Culture on a Social Coding Site.
In Proceedings of the 35th International Conference on Software Engineering
(to appear).

Pinto, L. S., Sinha, S., and Orso, A. (2012). Understanding myths and realities of
test-suite evolution. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ’12, pages 33:1–
33:11, New York, NY, USA. ACM.

Pohl, K. and Metzger, A. (2006). Software product line testing. Commun. ACM,
49:78–81.

Raja, U. and Tretter, M. J. (2009). Antecedents of open source software defects:
A data mining approach to model formulation, validation and testing. Inf.
Technol. and Management, 10:235–251.

Raymond, E. S. (2001). The Cathedral and the Bazaar: Musings on Linux and
Open Source by an Accidental Revolutionary. O’Reilly & Associates, Inc., Se-
bastopol, CA, USA.



BIBLIOGRAPHY 153

Rehmand, J., Jabeen, F., Bertolino, A., and Polini, A. (2007). Testing software
components for integration: a survey of issues and techniques. Software Testing,
Verification and Reliability, 17(2):95–133.

Reis, S., Metzger, A., and Pohl, K. (2007). Integration testing in software product
line engineering: A model-based technique. Lecture Notes In Computer Science,
pages 321–335.

Rigby, P. C. and Storey, M.-A. (2011). Understanding Broadcast Based Peer Re-
view on Open Source Software Projects. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 541–550.

Rothermel, G. and Harrold, M. (1998). Empirical studies of a safe regression test
selection technique. IEEE Transactions on Software Engineering, 24(6):401–
419.

Rountev, A., Milanova, A., and Ryder, B. (2004). Fragment class analysis for
testing of polymorphism in Java software. IEEE Transactions on Software
Engineering, 30(6):372–387.

Rubio, D. (2009). Testing with Spring and OSGi, chapter 9, pages 331–359.
Apress, Berkeley, CA.

Shavor, S., D’Anjou, J., Fairbrother, S., Kehn, D., Kellerman, J., and McCarthy,
P. (2005). The Java Developer’s Guide to Eclipse. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Stephen, G. A. (1994). String searching algorithms. World Scientific Publishing
Co.

The OSGi Alliance (2011). OSGi Service Platform Core Specification; Release 4,
Version 4.3. http://www.osgi.org.

Tilley, S. R., Smith, D. B., and Paul, S. (1996). Towards a framework for program
understanding. In Workshop on Program Comprehension (WPC), pages 19–28.

van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L., and Riva, C. (2004).
Symphony: View-driven software architecture reconstruction. In Proceedings
Working IEEE/IFIP Conference on Software Architecture (WICSA’04), pages
122–134. IEEE Computer Society Press.

van Deursen, A., Moonen, L., Bergh, A. v. d., and Kok, G. (2001). Refactoring
test code. In Proc. of the Int’l Conf. on Extreme Programming and Flexible
Processes (XP), pages 92–95. University of Cagliari.

van Deursen, A., Moonen, L., van Den Bergh, A., and Kok, G. (2002). Refactor-
ing test code. In Extreme Programming Perspectives, pages 141–152. Addison
Wesley.



154 BIBLIOGRAPHY

Van Rompaey, B., Du Bois, B., and Demeyer, S. (2006). Characterizing the
relative significance of a test smell. In Proc. of the Int’l Conf. on Software
Maintenance (ICSM), pages 391–400. IEEE CS.

Van Rompaey, B., Du Bois, B., Demeyer, S., and Rieger, M. (2007). On the
detection of test smells: A metrics-based approach for general fixture and eager
test. IEEE Trans. on Softw. Engineering, 33(12):800–817.

Voelter, M. (2001). Pluggable component: A pattern for interactive system con-
figuration. In Dyson, P. and Devos, M., editors, Proceedings of the 4th European
Conference on Pattern Languages of Programms (EuroPLoP ’1999), Irsee, Ger-
many, July 7-11, 1999, pages 291–304. UVK - Universitaetsverlag Konstanz.

von Krogh, G., Spaeth, S., and Lakhani, K. R. (2003). Community, joining, and
specialization in open source software innovation: a case study. Research Policy,
32(7):1217–1241.

Weiss, S., Indurkhya, N., Zhang, T., and Damerau, F. (2004). Text Mining:
Predictive Methods for Analyzing Unstructured Information. SpringerVerlag.

Wermelinger, M. and Yu, Y. (2008). Analyzing the evolution of eclipse plugins.
In Proceedings of the 2008 international working conference on Mining software
repositories, MSR ’08, pages 133–136, New York, NY, USA. ACM.

West, J. and Siobhán, O. (2008). The role of participation architecture in growing
sponsored open source communities. Industry & Innovation, 15(2):145–168.

Weyuker, E. J. (1998). Testing component-based software: A cautionary tale.
IEEE Software, 15(5):54–59.

Yin, R. K. (2003). Case study research: design and methods. Sage Publications,
3rd edition.

Yoo, S., Harman, M., Tonella, P., and Susi, A. (2009). Clustering test cases to
achieve e↵ective and scalable prioritisation incorporating expert knowledge. In
Proceedings of the eighteenth international symposium on Software testing and
analysis, ISSTA ’09, pages 201–212, New York, NY, USA. ACM.

Yoon, I., Sussman, A., Memon, A., and Porter, A. (2013). Testing component
compatibility in evolving configurations. Inf. Softw. Technol., 55(2):445–458.

Zaidman, A., van Rompaey, B., Demeyer, S., and van Deursen, A. (2008). Min-
ing software repositories to study co-evolution of production & test code. In
Proceedings 1st International Conference on Software Testing Verification and
Validation (ICST), pages 220–229. IEEE Computer Society.

Zaidman, A., Van Rompaey, B., van Deursen, A., and Demeyer, S. (2011). Study-
ing the co-evolution of production and test code in open source and industrial
developer test processes through repository mining. Empirical Software Engin-
eering, 16(3):325–364.



AppendixA
Appendix: Grounded Theory Study

A.1 Resulting Collection of Codes
As a result of the interview analysis process, a collection of codes emerged.
Our coding process was open, allowing codes and concepts to emerge freely;
Through (constant) comparison and grouping, the coding structure as presen-
ted here emerged. Here we summarize the eventual set of codes resulting from
this analysis.

We use a simplified presentation into a three-level hierarchy (category, concept,
code). With each concept we associate a question, where each code belonging to
the concept can be read as an answer to that question

In principle, the codes (or even concepts) can be grouped in multiple ways,
sometimes in additional subgroups. For example, test execution time is listed as
a barrier, but could also be grouped under integration testing. Here we present
the dominant decomposition, putting codes in the most relevant concept only.

A.1.1 Category 1. Practices
Testing practices that Eclipsers mention or adopt.

Concept 1.1. Supporting Processes

Which processes (such as requirement documentation, issue tracking) are in place to support
testing activities? Who tests the code/system?

1.1.1 Issue tracker
Requirements are documented in an issue tracking
system such as Bugzilla.

1.1.2 Requirement source It is clear who defines the requirements.
1.1.3 Developer testing Testing is only done by the developers.

1.1.4 Hybrid testing
The QA team as well as the developer team are
involved in testing.

155



156 APPENDIX A

1.1.5 Tester status
Pure testing activities have a lower status than
development.

Concept 1.2. Unit Testing
In what way is unit testing used in Eclipse projects?

1.2.1 Key practice: Unit testing Unit testing is the key test practice.
1.2.2 Preference Unit testing is the preferred practice.
1.2.3 Coverage Coverage of the code is measured.
1.2.4 No coverage Coverage of the code is not measured.

1.2.5 Confidence
A unit test suite gives confidence when making a
change or when refactoring.

1.2.6 Limited confidence
Relying too much on automated tests or coverage
can be risky.

1.2.7 Unit testability Units are designed to be testable by unit tests.

1.2.8 Unit non-tested
Units that cannot be made testable are not sub-
jected to unit testing.

1.2.9 Fast execution Even a substantial unit test suite executes fast.

Concept 1.3. Beyond Unit Testing

How are test practices other than unit testing applied?

1.3.1 Test automation
Project aims at obtaining a large degree of test
automation.

1.3.2 Hardware integration
For embedded systems, integration testing is
guided by hardware integration.

1.3.3 Continuous integration
Automated build and test servers are used to con-
duct continuous integration.

1.3.4 Unit vs integration testing
The amount of integration testing done depends
on the amount of unit testing done.

1.3.5 Fault location
During integration testing fault localization is
hard.

1.3.6 GUI testing
User interface testing tools are used to do auto-
mated testing from the GUI.

1.3.7 GUI maintainability
Problems with maintainability of GUI test cases
are reported.

1.3.8 GUI non-tested
No test e↵ort is made to cover the GUI with auto-
matic tests.



RESULTING COLLECTION OF CODES 157

A.1.2 Category 2. Plug-in Specific Integration Testing

Testing practices that are specifically targeting plug-in-based systems.

Concept 2.1. PDE tests

How are tests written using the Eclipse Plug-in Development Environment (PDE) test frame-
work?

2.1.1 Workbench dependencies
The PDE runner is used since the test depends on
the workbench.

2.1.2 PDE as integration test
The PDE-Junit framework is used to write integ-
ration tests.

2.1.3 PDE as unit test
The PDE-Junit framework is used to write unit
tests.

2.1.4 Headless PDE
The PDE tests are executed without the UI (i.e.
in headless mode).

Concept 2.2. Plug-in characteristic

To what specific test practices does the plug-in nature lead?

2.2.1 No influence
The plug-in characteristic has no influence on test-
ing.

2.2.2 Modularization
The plug-in mechanism is used for modularizing
test suites.

2.2.3 Extension points
Test strategies for Eclipse extensions and exten-
sion points are adopted.

2.2.4 Registration untested
The plug-in and extension point registration mech-
anisms are untested.

2.2.5 Plug-in testability
Eclipse plug-ins can be hard to test if they do not
expose their (internal) functionality.

2.2.6 Eco-system integration
Plug-ins are exercised in the context of the Eclipse
runtime environment.

2.2.7 GUI based
Automated GUI testing is used to test GUI based
Eclipse applications.

2.2.8 No eclipse integration Tests do not require the Eclipse or OSGi runtime.

Concept 2.3. Cross-feature integration

How is integration with third party plug-ins tested?

2.3.1 Plug-in independence
Plug-ins are considered independent, and combin-
ations are not tested.

2.3.2 Play nicely Plug-ins are supposed to work together.

2.3.3 Demand driven

Integration between plug-ins is only tested if there
is a specific feature / bug requiring the execution
of multiple plug-ins.

2.3.4 Manual combinations
Di↵erent combinations are installed and compat-
ibility is manually tested.

2.3.5 No automated cross-tests
No automated tests for cross-feature integration
exist.



158 APPENDIX A

2.3.6 Unpredictable
It can not be foreseen which combinations will be
incompatible.

2.3.7 Combination issues
Actually experienced issues between di↵erent
plug-ins are reported.

Concept 2.4. Versioning
How is testing against di↵erent versions of the platform or third party components conducted?

2.4.1 Build system
The software is build using di↵erent versions of the
platform.

2.4.2 External systems
Testing against di↵erent versions of external sys-
tems beyond the Eclipse eco-system is conducted.

2.4.3 No automated versions
No automated tests exist to test against di↵erent
versions.

2.4.4 Manual versions Version compatibility is tested manually.
2.4.5 Limited versions Only a limited set of versions is tested.

2.4.6 Assert compatibility
Version ranges include versions that are asserted
but not tested to work.

2.4.7 Update rarely
Updating versions of dependencies or the platform
is done rarely.

2.4.8 Unfeasible It is unfeasible to test for all version combinations.

A.1.3 Category 3. Test Barriers
Barriers that hinder adoption of integration test practices.

Concept 3.1. Testing Barriers

Which test barriers reduce the amount of plug-in specific integration testing?

3.1.1 Responsibility
Unclear who is or feels responsible for system in-
tegration issues.

3.1.2 End user requirements
System customization can lead to unclear or un-
known end user requirements.

3.1.3 Ownership
Lack of ownership or controllability over depend-
ent plug-ins and code.

3.1.4 Plug-in testing knowledge
Lack of technical knowledge needed to successfully
perform a plug-in specific test strategy.

3.1.5 Set-up build system

Too much time, e↵ort and knowledge needed to
get the infrastructure ready to use an integration
testing approach.

3.1.6 Execution time Execution time of tests is too long.

3.1.7 Eclipse testability
Eclipse is a highly coupled, and hard to test sys-

tem. See also 2.2.5/Plug-in testability

3.1.8 PDE integration tooling
The PDE framework has not been designed for
integration testing.



RESULTING COLLECTION OF CODES 159

A.1.4 Category 4. Compensation Strategies

Actions taken in order to compensate for not adopting certain test strategies.

Concept 4.1. Self hosting
How is the project team involved in testing in addition to traditional test activities?

4.1.1 Self-hosting The development team itself is also acting as user.

Concept 4.2. Community involvement

How are users or customers involved in testing activities?

4.2.1 Manual testing Users are involved in conducting manual tests.

4.2.2 Software usage
Users are involved in using early versions of the
software, e.g., pre-releases.

4.2.3 Operating systems
The community participates in testing against dif-
ferent operating systems.

4.2.4 Multiple versions

The community participates in testing against dif-
ferent versions of the workbench or required plug-
ins.

4.2.5 Compatibility
The community participates in testing the com-
patibility between several plug-ins.

4.2.6 GUI community
The community is involved in user interface test-
ing.

4.2.7 Filing bug reports Community files bug reports.
4.2.8 Feedback Users try out early versions and give feedback.

4.2.9 Customer involvement
Customers are involved in the software engineering
process.

Concept 4.3. Developer involvement

How are developers involved in testing activities?

4.3.1 Automated testing Downstream projects are exercising plug-ins used.

4.3.2 Release train
Multiple Eclipse plug-ins are released at the same
time in the release train.

4.3.3 Ecosystem
Projects make an e↵ort to work together to form
a coherent ecosystem.

4.3.4 Plug-in symbiosis Projects improve other projects they depend on.
4.3.5 Providing patches The community provides patches for bugs.

Concept 4.4. Openness

How open are the projects and processes used?

4.4.1 Releases
The release strategy includes nightly / unstable
releases.



160 APPENDIX A

4.4.2 Communication
Open communication is setup to ensure traceabil-
ity, visibility and transparency.

4.4.3 Test request
The community is explicitly requested to particip-
ate in testing.

4.4.4 Opening closed software
Development of closed source projects is opened
up to strengthen customer involvement.



KEY QUOTATIONS 161

A.2 Key Quotations
The coding process was based on transcripts we made of the interviews. Here we give, for each
of the participants, the most important quotes together with a selection of the codes we used
to tag those quotes. In the paper itself the quotes are organized by code, i.e., presented when
we are discussing a given part of the emerging theory.

Participant P1

1.3.8 GUI non-tested
“We don’t do functional testing since 80% of the
code is already tested with unit tests”

1.2.5 Confidence
“When you design unit tests in a good way, then
refactoring is easier.”

1.2.9 Fast execution “The good thing about unit tests is that
they are fast, whereby PDE tests are slow.”3.1.6 Execution time

2.1.3 PDE as unit test “Legacy code can be problematic when unit
testing, therefore sometimes PDE unit tests are
misused as mini integration tests.”

3.1.7 Eclipse testability

2.1.1 Workbench dependencies “The problem begins when a JUnit test grows
into a PDE test, because of the dependencies on
the workbench, or other Eclipse APIs.”

2.1.3 PDE as unit test

3.1.7 Eclipse testability

1.3.4 Unit vs integration testing “There are di↵erent ideas on how to test, but
with most of them I do not agree. I think
basically only unit testing is good.”

1.2.2 Preference

Participant P2

2.2.1 No influence

“I am not sure if there is a need to test if ex-
tensions correctly support the extension point, be-
cause it is mostly a registration thing.”

4.2.8 Feedback

“It was sort of this open source process, and we
expected people that actually use it to come up with
ideas as well and to improve it.”

1.1.2 Requirement source

“Usually you start small, with something you can
show, something that is working. Then, you get
feedback from the community, and then you de-
velop further.”

1.3.8 GUI non-tested
“We don’t have GUI tests, because we don’t have
much user interaction.”

Participant P3

1.1.4 Hybrid testing “We have both. Some people are pure testers,
some are pure developers because they think like
developers and have not done testing. It’s
listening to the skill-sets of your people. Knowing
and not pushing people to do things that they are
not good at.”

1.1.5 Tester status



162 APPENDIX A

2.2.7 GUI based

“Eclipse wizards are really interesting in terms of
test design. You really have to think about how to
structure tests so they can be reused.”

1.1.4 Hybrid testing

“We have our testers in very close contact with
the developers. It’s a way of getting discussions
going.”

4.2.9 Customer involvement

“We work very closely with the customer to do
things in an agile way. He can change things,
he can swap out features. We also have a weekly
meeting that we call show & tell. The customer
comes to that and he sees how things are going.”

4.2.9 Customer involvement

“Without the continuous involvement of the cus-
tomer throughout, and without the customer being
there, you probably find many more problems at
the end.”

4.2.9 Customer involvement

“I would say we are in a reasonably unique situ-
ation in the sense that our customer is an internal
person. So, we can always have a meeting with
him.”

1.1.2 Requirement source

“We manage our requirements over many sprints:
when we make them, we discuss them with the
whole team. It takes a long time, but it means
that everybody on the team knows how it’s gonna
work. Then any problems come up in the meeting
and not after 3 weeks of developing. Then the fea-
tures are very prominent in everybody’s minds.”

1.2.5 Confidence

“Another situation where we use unit tests a lot is
when we are going back to an older piece of code
that has to be refactored.”

1.2.5 Confidence

“It gives you a certain level of comfort to know
that when you make a change and you break some-
thing, that it would be apparent in your test case.”

2.2.2 Modularization

“ The modularization abilities of OSGi are inter-
esting for test design. Then you really have to
think about how to structure tests so they can be
reused.”

1.3.1 Test automation

“We make a joint decision whether it should
be automated or whether it should be manually
tested. There are a lot of things that come into
play when automating a test. We look at how easy
is it will automate, or is it going to be brittle, and
weigh that up against how important that is.”

1.3.3 Continuous integration “One of the traps that a team can fall into is,
because the tests are running every night, they
think that the safety net is bigger than it is.”

1.2.6 Limited confidence

1.2.4 No coverage

“We do not measure coverage yet. One of the
things we are working on is to get a useful coverage
criteria. We measured it in the past, but we did
not know what the numbers really meant for us.
So now, we are investigating what these numbers
mean for us.”



KEY QUOTATIONS 163

1.3.6 GUI testing

“I think it is so incredibly important, to always
have that customer perspective. Anything that will
a↵ect the user, we prefer to write as an acceptance
test.”

Participant P4

3.1.5 Set-up build system

“the di�culty of integration testing Eclipse plug-
ins starts with the set-up of the build – that’s dif-
ficult.”

3.1.4 Plug-in testing knowledge

“We only use unit testing because integration test-
ing is complicated. Most people just do not do it.
Often it’s even not necessary.”

4.4.2 Communication

“The advantage of open communication is that
others see it as well and can participate. Then,
solutions to problems can even come from outside
of the original team.”

3.1.4 Plug-in testing knowledge

“Why [testing] is so di�cult? For Web projects,
you find good templates. For Eclipse, you don’t.
There are some approaches, but nothing you could
call best practice. Testing has to be easier. Es-
pecially for testing plug-ins, we would need some
best practices. It would be great to have concrete
tutorials and concrete solutions. Big companies,
they have their processes and strategies working,
but it’s di�cult for small companies.”

Participant P5

1.1.3 Developer testing

“Tester and developer, that’s one person. From
our view, it does not make sense to have a dedic-
ated test team, which has no idea about what the
software does and can only write some tests. The
person that writes the code, that one knows what
has to be tested.”

1.1.3 Developer testing

“I think that the developer is better suited for in-
tegration testing than the tester because they know
the application better. Otherwise, you have to ex-
plain to the tester again how that works and what
the requirements are. That’s double the work.”

1.3.2 Hardware integration

“We have automated integration tests which run
on the PC and on the devices. We have four
device setups, running the same software, and the
tests are run on each of the devices.”

1.3.3 Continuous integration “There are tests that run fast, which are executed
whenever you commit in SVN through
CruiseControl. Then every two hours, a larger
build is run, which also executed the tests
requiring more time. And in the night, the very
slow tests run, which take several hours.”

3.1.6 Execution time



164 APPENDIX A

2.2.2 Modularization
“Unit tests run in the same bundle as the code they
test; integration tests run in their own bundle.”

2.2.5 Plug-in testability “Sometimes you have to extend the bundle you
want to test with a bit of extra functionality in
order to be able to do proper integration testing.”

3.1.7 Eclipse testability

1.3.6 GUI testing “We specify all GUI tests with eFitnesse.”

3.1.6 Execution time

“Integration testing just takes longer, and there-
fore, it runs during the night. Then it does not
disturb anybody when all the devices beep and
bleep.”

4.2.9 Customer involvement

“The customer plays a important role during the
development. We always try to deliver something
- in relatively short intervals - to always get feed-
back. The customer, for example, uses Scrum,
and we send a snapshot every 2-3 weeks, and the
customer then tests all the new features that have
been added in the last sprint. All this is actually
quite extensively tested by the customer.”

1.1.2 Requirement source

“Requirements are defined at the beginning of a
project. That’s developed together with the cus-
tomer. In principle, the outcome is a functional
specification, which is also used for testing.”

1.3.1 Test automation “At the beginning, most parts have been tested
manually. 3-4 years ago, we started investing a
lot of time in automating tests, and we want to
automate as much as possible. The only problem
might be to trust the test outcome too much.”

1.2.6 Limited confidence

1.2.3 Coverage
“That’s integrated in the continuous integration
process. We have around 60-80% coverage.”

Participant P6

1.1.2 Requirement source

“The requirements are recorded in Bugzilla, but
not in detail. The person developing a feature en-
hancement, that one aligns his ideas with the ones
of the others as much as he thinks is useful and
necessary. That’s a self-responsible process. We
assume that all committers take responsibility for
the overall product.”

4.2.1 Manual testing “We do not test cross-feature integration
automatically. There is the possibility that other
plug-ins have side e↵ects with ours, but if you
are part of the simultaneous release, then there is
a set of rules that you must obey. One rule
states: ‘Play nicely together’. Surely, that’s only
written on paper. We ensure that by having
regular builds in which we put all things together,
and then we ask the community to try the
combinations. And usually they do that in the
last weeks before the release candidate goes out.
And until now, pre-existent problems became
apparent in this phase.”

2.3.2 Play nicely

2.3.7 Combination issues

4.4.1 Releases



KEY QUOTATIONS 165

3.1.6 Execution time “The long execution time is really bad. A big
problem. Turnaround times must be as short as
possible. And that’s a problem with the PDE
builds. We run them most of the time in
headless mode, if possible, meaning the tests do
not need the UI.”

2.1.4 Headless PDE

3.1.6 Execution time “But if we need the UI, then it is really slow, and
then this also means it’s multithreaded, which
makes it even more di�cult. On the other hand,
we have to test that too.”

2.1.4 Headless PDE

3.1.6 Execution time “Even with unit tests, it is important that they
are fast. You always have to keep an eye on
where you spend the time during a turnaround,
and then it is also important to look at the tests
to see where you can speed things up.”

1.2.9 Fast execution

2.1.1 Workbench dependencies “A PDE test is similar to a unit test. Actually,
it is a unit test, with the only di↵erence that it is
based on a large web of objects. So, typically the
whole workbench is started.”

2.1.3 PDE as unit test

2.1.2 PDE as integration test “Then, we have tests like start the workbench,
create two projects, create a file and save it.
Those are the real integration tests – they need
everything. You really cannot mock that
anymore. That does not pay o↵. These tests run
as PDE tests and also in the continuous
integration.”

1.3.3 Continuous integration

1.3.5 Fault location

“A disadvantage of integration testing is that
faults are hard to locate, because if something goes
wrong you have executed one million lines. It is
more di�cult to understand where the fault oc-
curred than if you execute 10 lines.”

3.1.6 Execution time “We prefer unit tests. Fast running, small tests.
Integration tests, or functional tests, are also
nice and important, but we would prefer to test
everything without the UI.”

1.2.2 Preference

1.3.4 Unit vs integration testing

3.1.7 Eclipse testability “It is not our code that we have problems with.
It is the code of the Eclipse platform, that from
JFace and SWT. And that code we do not like to
test. We have to do it anyway. We do not like
it, because it is hard to produce small tests, which
means you always have a lot of infrastructure.”

3.1.3 Ownership

1.1.2 Requirement source “We have Bugzilla, and through that we
communicate the most. Also with the users and
the committers. People add patches, and
suggestions about how this or that can or should
be done.”

4.2.8 Feedback

4.3.5 Providing patches

3.1.7 Eclipse testability

“The problem is that the Eclipse platform is
very hard to test, because components are highly
coupled and interfaces are huge, and all is based
on a singleton state. This is very hard to de-
couple.”



166 APPENDIX A

Participant P7

3.1.7 Eclipse testability “[Project 7] is a plug-in, but it is not an end-user
plug-in. It is a half-way plug-in. Other plug-ins
build on top of [Project 7], so integration testing
would need to include some other components. It
is not the final, the whole thing.”

3.1.3 Ownership

3.1.2 End user requirements “Integration testing should be done at least in
strong collaboration with the developers of the
end-user plug-in. One example is the syntax
highlighting. Only when I know about the
language and have the syntax highlighter can I
test it and see whether it was successful or not. I
need some third party component.”

3.1.3 Ownership

3.1.3 Ownership

“And you never know, once you write a good test,
it will be obsolete with the next version of Ec-
lipse.”

1.3.7 GUI maintainability
“We tried GUI testing for a while but it was too
much work.”

4.4.2 Communication

“We can just call each other, but it is better to use
the mailing list and let others know that there are
some considerations. And also our users read the
mailing list.”

4.4.2 Communication

“We try to communicate via the mailing list be-
cause we want to give some visibility into the
activity of the project.”

4.2.5 Compatibility

“We have [major changes that break the API] once
in a while. We know most of the users and we
normally investigate their source code to see if a
change is going to be a problem. If it is going to
be a real problem, we usually do not do it. We
only do small changes.”

4.4.2 Communication “If there is really an API change, then we mail
all the users personally, saying that something
new is coming.”

4.2.5 Compatibility

4.2.1 Manual testing “So, what now happens is that [person X] also
manages a lot of applications of [our project],
like the Cobol IDE and another IDE, and he just
makes a pre-release within his small group that
use the tools, and lets them test it. So, it is
really manual testing.”

4.4.1 Releases

1.2.3 Coverage “My part is mainly tested with unit tests. I have
85% coverage, but actually I measured it only
when I wrote the tests. Now, I only maintain it
and I do not measure anymore.”

1.2.1 Key practice: Unit testing

1.2.6 Limited confidence

“It is very easy to get high coverage with unit tests,
like you generate mock objects and you run it.
But, the hard thing is: what do you check when
the method is finished, i.e., you must know about
the post-conditions. So, are people actually doing
useful testing, or are they just going through the
motions with the unit tests?”



KEY QUOTATIONS 167

2.4.3 No automated versions “Our project requirements specify that the
software has to work with older versions of the
platform, ranging from Eclipse 3.1 to 3.5. We do
not have automated tests to verify the
compatibility, but when we release [Project 7],
then we test it. So, when we do manual testing,
then we test for di↵erent versions of Eclipse.”

4.4.1 Releases

2.4.4 Manual versions

Participant P8

4.4.2 Communication

“We have a lot of Skype-to-Skype communication,
because it is more e�cient. For topics relevant
for the bigger community we are often copying the
communication records to the Bugzilla.”

4.2.4 Multiple versions “We only test the latest available versions of our
dependencies, those that are together in the
release train. Those we o�cially support. That
does not mean that others are not working, but
in the worst case everybody has to try it out
themselves.”

3.1.1 Responsibility

4.3.2 Release train

2.4.6 Assert compatibility

2.4.5 Limited versions

4.2.4 Multiple versions “Our ranges are most of the time bigger than
what we o�cially support. For the platform we
have a minimum requirement of 3.4, but this
does not mean that if somebody really still runs
with 3.4 that we will commit our valuable time to
solve problems. Then, he has to bother himself.”

3.1.1 Responsibility

2.4.6 Assert compatibility

2.4.5 Limited versions

Participant P9

4.2.4 Multiple versions “To test those versions, we do it manually, but
we also have some users that do that with the
unstable versions.”

4.4.1 Releases

2.4.3 No automated versions

2.4.4 Manual versions

4.4.1 Releases “We have 3-tiered releases. So, with unstable
releases. And some of the experienced users use
them, and they can also report bugs for those,
and if that all works, than we release them as
stable releases.”

4.2.7 Filing bug reports

4.2.2 Software usage

4.2.2 Software usage “The tests that I perform are very simple manual
tests, the real tests are coming from the users,
that are doing all kind of di↵erent things with
[Project 9]. We are just testing if there is no
basic regression.”

4.2.1 Manual testing

2.3.5 No automated cross-tests

2.3.1 Plug-in independence “We do not have problems with plug-ins that
work in the same domain. We only had problems
with plug-ins that do something else, like
Subversion and Mylyn. If you would have [a
similar plug-in], it would make sense to test that.
But at this point, we do not expect a lot of
interaction with other plug-ins.”

2.3.3 Demand driven

2.3.7 Combination issues

2.3.6 Unpredictable



168 APPENDIX A

3.1.1 Responsibility “The users also use a number of other plug-ins
and we got some reports about problems. The
combination of plug-ins does not work. The users
filed reports in our issue tracker, but we do not
know if the problems are caused by our plug-in or
by the others.”

2.3.7 Combination issues

4.2.5 Compatibility

2.4.7 Update rarely

“We use a very old version of the main plug-in
we depend on. Sometimes we update, but there is
always the risk that it will break something and
then you have to do extensive [manual] testing.”

1.1.1 Issue tracker
“We have even an open repository, we want it to
be easy to participate.”

Participant P10

2.2.7 GUI based “There are no specific types of tests for
[integrating multiple plug-ins], but it is covered
by the end user tests, and by the GUI tests,
which communicate amongst plug-ins, but the
internal coverage is more random.”

1.3.6 GUI testing

1.3.1 Test automation

“Two years ago, many manual tests were still be-
ing executed, but we already had the requirement
to automate. But when tests had to be executed
daily we could not do it anymore. There are still
manual tests, but not a lot. A lot of e↵ort has
been put on automation, because it became an ob-
ligation.”

1.3.3 Continuous integration “Having stability in product quality costs time
and money. Continuous integration is needed to
reach that. Also, the status of the QA has been
increased because of CI, and we can also see that
it helps to meet the development goals.”

1.2.5 Confidence

1.2.3 Coverage

“We are just in the process of setting up coverage
measurements. We see it’s becoming a require-
ment, but until now management has not explicitly
asked for it.”

1.3.7 GUI maintainability

“It happens that during product evolution, sud-
denly something works di↵erently and the tests do
not work anymore. [There are] synchronization
problems, sometimes the test has not been set-up
in a clean way, or timing problems occur. To cope
with that takes a lot of time.”

Participant P11

4.3.5 Providing patches “Yes, for the GEF part, we find and report bugs,
and we provide patches. In fact, perhaps it is not
our own product, but our product relies on this
other product. So it is normal to improve the
other parts that we need.”

4.3.4 Plug-in symbiosis



KEY QUOTATIONS 169

4.2.7 Filing bug reports
“The community is involved in development by fil-
ing bug reports and feature requests.”

4.2.8 Feedback

“Open source is great because we can provide feed-
back for each other, and help others. I think it is
good that the community is involved in the devel-
opment.”

1.3.1 Test automation

“Some tests are di�cult to automate - it would be
too much e↵ort to write tests or maintain them.
A human person is better and faster to test that.
So, our QA team tests such parts, something we
won’t automate. And also new features, in order
to have feedback, not only on functionality but also
on usability.”

1.3.3 Continuous integration

“Yes, we are using continuous integration. We are
using Hudson. We have several builds in parallel,
for branches, for open source versions, and some
commercial versions.”

1.2.3 Coverage

“I do not know the exact number for the coverage.
We have around 80%. We have a lot of generated
code, which we do not exclude. We would have
to configure the tool. But in fact we are using it
more to see whether some important parts are not
tested automatically.”

Participant P12

1.3.5 Fault location

“Somewhere it fails. But, most of the time when
it fails during integration testing, and I analyze it
and understand the problem, then I write a unit
test so that I can find the problem faster.”

4.2.4 Multiple versions

“It can happen that something breaks because of a
new Eclipse Version. Such things come back from
the user community quickly.”

4.2.4 Multiple versions “Testing is done by the user-community and they
are rigorous about it. We have more than 10,000
installations per month. If there is a bug it gets
reported immediately. I do not even have a
chance to test [all possible combinations]. There
are too many operating systems, there are too
many Eclipse versions.”

4.2.3 Operating systems

2.4.8 Unfeasible

1.1.2 Requirement source “The main amount [of requirements] comes from
me, because I know the use case from another
project, and I know how the library has to work
so that you can integrate it in Eclipse, because I
have done that already. In addition, there are
requirements, and some very good ideas from the
community, and also often very nice solutions.”

4.3.5 Providing patches

1.3.1 Test automation “Test automation is very important, because you
can just start working to fix a bug or implement
a new feature even if you haven’t worked on this
piece of code for some time. It’s a safeguard that
nothing gets broken.”

1.2.5 Confidence



170 APPENDIX A

4.4.2 Communication

“We try to keep everything open. There is no one-
to-one communication. Everything goes through
the forums at Source Forge, so that we share the
ideas and also to better document them.”

Participant P13

1.2.5 Confidence

“It gives you a certain level of comfort to know
that when you make a change and you break some-
thing that this would be apparent in your test
case.”

4.3.2 Release train

“Some testing is performed downstream, when
packages of multiple plug-ins are produced. Some
packages have plug-ins like Mylyn, [project 13],
and a whole ton of other projects. Then, there
are people that test whether the packages behave
reasonably.”

4.3.1 Automated testing

“That is one of the things I totally rely on, e.g.,
the Web Tools Platform uses [project 13] heav-
ily, and they have extensive JUnit tests, and so I
am quite sure that when I break something, some-
body downstream will rapidly notice and report the
problem.”

4.2.1 Manual testing
“If there are problems, people definitely report
them, so you do find out about problems.”

2.4.6 Assert compatibility

“A lot of people put version ranges in their bundle
dependencies, and they say we can run with 3.3 up
to version 4.0 of the platform. But I am willing
to bet that 99% of the people do not test that their
stu↵ works, they might assert it, but I do not be-
lieve that they test.”

4.4.2 Communication

“Being part of the release train, there is this re-
quirement to have open plans, and to communic-
ate clearly with your community what changes you
plan to make.”

4.4.2 Communication “I try to avoid writing any large planning
documents. But, not a single code change goes
into the code base without a corresponding
Bugzilla ID.”

1.1.1 Issue tracker

2.2.3 Extension points

“Our test cases make use of extension points, so
we end up testing if extension point processing is
working correctly.”

1.2.4 No coverage

“We don’t measure coverage, but we should. Some
people have measured it in the past, and tests have
been added to improve the test coverage, but this
is another one of those things that has not really
happened much in recent years because of a lack
of time.”

1.3.8 GUI non-tested

“We try to make a point of surfacing as little vis-
ible stu↵ in the UI as possible. All our UI testing
is essentially ad hoc and manual.”



KEY QUOTATIONS 171

Participant P14

1.3.4 Unit vs integration testing “Try to get to a level that you write unit tests,
always, whenever you can. And write your code
in such a way that the structure and the classes
can be tested with unit tests. And then, at max.
you use one integration or PDE test to probe the
code. Ultimately, unit tests are our best friends,
and everything else is already di�cult. ”

1.2.7 Unit testability

2.1.3 PDE as unit test

“We use integration tests to refactor a code pas-
sage, or to fix a bug, when you cannot write a
unit test. Then, at least you write an integration
test that roughly covers the case, to not destroy
something big. That, we use a lot.”

2.2.6 Eco-system integration “We have to test the integration of our code and
the Eclipse code, and then you automatically
have the need for PDE tests. And then, you test
in a di↵erent way, because you do not have so
much interaction between the code you write and
the test code, and you have more test
requirements. There are more players in the
game.”

2.1.1 Workbench dependencies

1.2.9 Fast execution

“With us it is common practice that everyone runs
the unit test suite before committing. We have
around 3000 unit tests, which take 2 minutes to
execute.”

3.1.6 Execution time

“Our integration tests are only executed in the
nightly build. I guess they take approximately half
an hour to execute.”

3.1.7 Eclipse testability “The problem is that code pieces are strongly
interwoven with each other. You can’t just call
one piece of code, but you must first, to even be
able to call the code, set all pre-requirements and
put the system in the right state, and this often
means that you have to boot and instantiate the
whole system. And at a certain point, writing a
unit test does not pay o↵ anymore.”

2.1.1 Workbench dependencies

1.3.7 GUI maintainability

“We had a QF-Test suite, but it became appar-
ent that those are too rigid to use them further
[if software evolves]. That’s why we stopped using
them.”

1.3.7 GUI maintainability

“We also have a couple of Fit tests. We had good
experiences, although we had problems with main-
tainability. In the end, it was too much trouble
compared to the benefits we got.”



172 APPENDIX A

1.1.4 Hybrid testing

“Testing is a multi-stage process, because of
Scrum. In fact, the development team manually
tests it before calling it done and submitting it.
Then, the quality representative who is on the
same team, takes over, manually tests it again,
and determines if it’s ready. If he accepts, then
it goes to the “expert users”, where we also sit in
and explain the results of the sprint. If there are
complex scenarios they might also test it again.
Finally, it is applied to the production system.”

4.2.9 Customer involvement

“The “expert users”, they are from the customer
and use the software in production. Those are the
really expensive people, the people that bring in
the money at the customers. They use the system
themselves and in real production.”

2.4.5 Limited versions “We always have one specific version for
platform and libraries that we use, if we update
that, that’s a major e↵ort. That we do only
rarely.”

2.4.7 Update rarely

Participant P15

1.2.1 Key practice: Unit testing “The majority of the tests are written with
JUnit, and the main test suites comprise tests
that do not depend on Eclipse.”

2.2.8 No eclipse integration

1.3.7 GUI maintainability

“In my experience, automating UI testing is very
expensive with no big benefits, especially [if you
have a lot of] change.”

3.1.5 Set-up build system

“There are a few tests that depend on Eclipse, but
these are actually currently not run on a daily
basis, i.e., as part of the regular tests. It is a tech-
nical problem, just the ability to run them from the
command line, i.e., in the same way as the other
tests are run. This was impossible until Eclipse
3.6.”

4.2.9 Customer involvement “People book time at hatches, to try the software.
It is not like they go to test it, but they use it, so
they are users, but they might do things that help
uncover a couple of bugs and issues.”

4.2.2 Software usage

4.2.9 Customer involvement “A lot of the product is used by the scientists in
the complex. The developers have access to the
users all the time. So it tends to be: they develop
for 4 months, make a release, make it available
to the scientists and then fix it as they go along.
They are a big source of feedback by saying what
improvements they like, and which features they
need. So, they give a lot of feedback to the
developers.”

4.2.8 Feedback

4.4.1 Releases



KEY QUOTATIONS 173

1.1.1 Issue tracker

“There is a separate reporting system which the
scientists have to submit feature requests, en-
hancements and bugs. But some of that is also
done directly, face to face with some developers
that are dedicated to help them.”

Participant P16

2.2.3 Extension points “We tried a lot. We test our functionality by
covering the functionality of the extension point
in a test case, i.e., testing against an API. The
small glue code where the registry gets the
extension, that’s not tested, because it is just
hard to test that. And for these untested
glue-code parts we had the most bugs.”

2.2.5 Plug-in testability

2.2.4 Registration untested

4.3.3 Ecosystem

“I was actually the only one making an e↵ort
to integrate our project with the other, like with
EMF. To make sure it works fine. I often star-
ted the integration process, but now this is really
driven by the other projects and the community.
Our project has almost nothing to do with it any-
more. Also not with the compatibility issues.”

2.3.4 Manual combinations “There are no automated tests for that, because
that is quite a complex topic, also because you
never know who you will have problems with.
That’s why we test that manually a lot.”

2.3.5 No automated cross-tests

2.3.6 Unpredictable

2.4.8 Unfeasible

3.1.5 Set-up build system

“We had some PDE tests, but they were not de-
veloped by us. They came from the library and its
test suite, which we took over. But the PDE tests
included have never been part of the continuous
integration, because it was too much e↵ort to set
that up.”

4.4.1 Releases “We are explicitly paying attention to regularly
making new milestones publicly available. And
then, we always write to our community ’Please
test our software’, because we want to get a clean
release. That’s why we motivate the people to
test their applications with our milestone.”

4.2.2 Software usage

4.4.3 Test request

4.2.4 Multiple versions “It’s great that people not only work on a stable
version, but also use a new version, so to say
bleeding-edge, and report if something breaks.
Then, we can fix that in the next release. Those
are typical regressions.”

4.2.2 Software usage

4.2.7 Filing bug reports

4.4.2 Communication

“There are things we discuss on the mailing lists
because we know others want to take part. Then
we make internal discussions public.”



174 APPENDIX A

4.4.2 Communication

“If people want to be involved, they are very wel-
come. Especially before a release, then we al-
ways ask what would be interesting or the most
important for the community. This information
serves as input for the planning. Nevertheless,
the planning takes place internally, because we do
not want somebody from outside dictating what we
have to work on.”

4.3.4 Plug-in symbiosis

“I report problems I discover in other Eclipse pro-
jects often. And this happens also the other way
around.”

4.2.7 Filing bug reports

“To just mention some numbers: At the moment,
we have 262 open bugs and 2700 closed bugs.
Many bug reports came from end-users. So, the
community has been very active and most help-
ful.”

2.2.5 Plug-in testability

“With the use of OSGi, the amount of black box
testing increases, because the di↵erent classloaders
prevent you from accessing the code. You can’t
access it anymore.”

1.1.2 Requirement source

“Half of the requirements are determined by the
developers, on behalf of the company or custom-
ers. So, of course the developers make sure that
bugs and features important to the customers are
fixed or implemented. The other half of the re-
quirements are community driven. We have an
eye on the highest voting.”

2.4.5 Limited versions “The continuous integration server builds
[Project 16] on top of two versions of the
runtime: the latest stable version, and the
current version. Though, we always recommend
to keep the stable version, because that’s the
environment we know it works. And then, we
have one version, for us, to try out the latest
dependencies and see if everything works fine.”

1.3.3 Continuous integration

2.4.1 Build system

Participant P17

4.2.3 Operating systems “The community helps to test the system for
di↵erent operating systems, and versions. They
are very active with that.”

4.2.4 Multiple versions

3.1.6 Execution time

“For this product, we don’t have any pure unit
tests. We always use PDE tests, which are a lot
more complex, and take quite some time to run,
because OSGi has to be started and bundles have
to be loaded, and so on.”

3.1.6 Execution time

“It’s a di↵erence between 10 seconds and 1
minute: With 1 minute you switch to Twitter or
Facebook, and you’re disrupted in your flow.”



KEY QUOTATIONS 175

3.1.6 Execution time

“When I test my stu↵, around 1500 SOAP calls
are issued, which takes its time. This explains the
15 hours we need for testing – it’s not only due to
the slow execution, but also because of the network
tra�c.”

4.1.1 Self-hosting

“In our company, we have di↵erent set-ups, based
on Linux or Windows. This leads already to a
high coverage because we use our own products on
a daily basis. Then you are aware of problems and
report that immediately.”

1.3.8 GUI non-tested
“We do not test the GUI. The problem is that all
tools are essentially useless.”

3.1.5 Set-up build system

“In addition to the long execution time, it is a
hassle to get [the GUI tests] run on the build
sever.”

1.3.8 GUI non-tested

“What I prefer to do is factor out the key logic,
which I then cover well with unit tests. The glue
logic between button and controller is untested.
You write it once, and then it does not change
anymore.”

4.2.6 GUI community “The community definitely plays a role in GUI
testing. I think, there is almost only the
community that comes and says: ’Look there, the
button is wrong, and I do not like that.’ For
these tasks, the community is very active.”

4.2.1 Manual testing

2.3.1 Plug-in independence

“No, we don’t test plug-in combinations. With
Project17, I don’t see it as relevant, since there
should be no problems. Things are clearly separ-
ated.”

1.1.1 Issue tracker “In my current project, all requirements come
directly from the customer. A lot of [team
communication] goes via Mylyn task, and we
have external Mylyn tasks filed by our
customers.”

1.1.2 Requirement source

4.2.9 Customer involvement

2.4.2 External systems

“When I integrate external systems, I run my
single test suite against all versions of this ex-
ternal system. Using this, I can be sure, for ex-
ample, that my system works well with all 18 ver-
sions of [the product to integrate]. I need this,
because I cannot rely on them that their systems
work the same tomorrow as they do today.”

2.4.2 External systems

“We test our plug-ins, which are connecting ex-
ternal systems, against many, many versions of
the end systems. For the integration of Bugzilla,
for example, we support all Bugzilla versions from
the last 3 years. That is around 17 releases and
we have the tests run against each version.”



176 APPENDIX A

Participant P18

1.2.1 Key practice: Unit testing

“At our company, testing is quite standard. We
have di↵erent stages. We have unit testing, and
that’s where we put the main e↵ort - at least 70%
of the total expenses.”

1.2.2 Preference
“Unit testing, that’s where you find the most
bugs.”

2.2.2 Modularization

“I believe OSGi is very helpful for creating clear
structures. The test strategy is not changed, but
there are structural changes.”

1.1.3 Developer testing
“Every developer is also a tester. That’s also due
to test driven development.”

3.1.6 Execution time

“We split the unit tests into fast and slow run-
ning tests. Slow running tests consider e.g., time
outs. Fast running tests need for every module
one second, at a max.”

1.1.5 Tester status “As software developers, they feel comfortable
writing code, but when they have to write tests,
then they do not see that as code. And then, to
teach them to develop joy and discipline to write
tests, that I find di�cult.”

1.1.3 Developer testing

2.3.3 Demand driven “We handle problems between several plug-ins in
a bug-driven way. If there is a bug we write a
test, but we do not think ahead which problems
could there be. Also, with unit tests, most of the
bugs are already caught.”

2.3.1 Plug-in independence

1.3.1 Test automation

“We automate everything. That’s our main prin-
ciple. Tests that are not automated, are not tests
for us.”

1.3.7 GUI maintainability

“We haven’t been 100% satisfied with capture-
replay, because too much is captured. After a cap-
ture, we always have a review to remove unneces-
sary code.”

Participant P19

4.3.5 Providing patches “It is very important for us that our tests are
executable by the contributers. This means that
all the infrastructure, the repositories, like
Bugzilla and TRAC, must be publicly available,
so that somebody that writes a patch has the
opportunity to run the same tests we execute
internally. So, he can run those and check
whether the patch is okay. We expect for every
contribution, that also the according tests are
provided. That’s a prerequisite.”

4.3.4 Plug-in symbiosis

4.4.2 Communication



KEY QUOTATIONS 177

4.4.1 Releases

“We have quite a similar process for the open
source and the closed source tools. Quite agile.
We release every 3-6 months and we try to keep
that synchronized between the open source and the
commercial products. Usually, [the open source
product] is released first and then the closed one,
which is based on it, follows around 1-2 weeks
later.”

4.3.5 Providing patches “[Who contributes] varies a lot: end-users, but
also our partners, or people that integrate their
systems with ours. That’s always di↵erent.”

4.3.4 Plug-in symbiosis

4.4.1 Releases “We release every 3 to 6 months, but we also
have periodic weekly builds, and an early access
version based on the weekly build, in order to get
early user feedback.”

4.2.8 Feedback

4.2.2 Software usage

2.2.5 Plug-in testability

“Testing is more di�cult, especially because of the
separate classloaders. That makes it complicated
to access the internals. Therefore some methods
which should be protected are public to enable test-
ing.”

4.2.5 Compatibility “we have no automated tests for cross-product
problems, but we do manual testing. Then, we
install [product 19] with the SpringSource Tool
suite, or with other products, like the IBM
rational team concert, or with other
distributions, like MyEclipse, to test for
interoperability. The user community plays an
important role in testing for interoperability.”

2.3.4 Manual combinations

2.3.5 No automated cross-tests

4.2.7 Filing bug reports “I would say the majority of the bug reports
come from the community. We have accepted
more than 800 patches during the life span of
this project. 1/7 of all bugs that have been
resolved have been resolved through community
contributions. That’s quite a high rate. If there
are many votes on a bug, then the bug gets a
higher priority. If there are many comments on
a bug, then we know this is a critical bug, and we
take the community feedback serious.”

4.3.5 Providing patches

4.2.8 Feedback

4.2.4 Multiple versions “But the actual testing is really performed by
users that run maybe 64 Windows, or Ubuntu,
and they use a di↵erent version, or wired
syntax-things etc. The feedback of the user is
very valuable for the quality of the system.”

4.2.3 Operating systems

4.2.5 Compatibility

2.2.3 Extension points

“In some cases, we have extensions just for testing
in the test plug-ins. Either the extensions are just
loaded or they implement some test behavior.”

2.2.3 Extension points

“We recommend that if somebody writes an exten-
sion, they should look at the relevant tests, because
those tests demonstrate how to use the API.”



178 APPENDIX A

1.1.3 Developer testing

“We have no dedicated test team. It would be great
[to have a separate test team], because then the de-
veloper can better concentrate on the development.
On the other hand, I think it’s important as a de-
veloper to feel responsible for the quality, and that
you learn how you can better test your software.”

4.4.2 Communication “We attempt to communicate more openly for
the commercial products. We have a public issue
tracker. But we do not include all our tasks as
we do with the open source projects. The
commercial side is a bit di↵erent. This means
the majority of issues are support requests, but
partially you see which features we’re working on.
Often a commercial request also causes a change
in the [open source parts], and then we attempt
to make that transparent, as much as possible.”

4.4.4 Opening closed software

1.1.1 Issue tracker

4.3.5 Providing patches “People from the outside contribute by providing
patches or feature enhancements, in case some
API is missing, or the API is not working as
expected. Also, when we find bugs in the
platform, we always try to provide the required
patch. If possible.”

4.3.4 Plug-in symbiosis

Participant P20

1.2.7 Unit testability “We try to encapsulate the logic as much as
possible to be able to test with unit tests. What
cannot be encapsulated is not tested.”

1.2.8 Unit non-tested

3.1.6 Execution time “We have 7000-8000 normal JUnit tests, which
run within 2 seconds. Running the same within
the PDE runner takes 1.5–2 minutes. Thinking
of the ’red, green, refactor’ paradigm, all tests
must be executed at least 3 times. With PDE this
becomes a problem.”

1.2.9 Fast execution

4.3.3 Ecosystem “We actively try to establish collaborations with
other committers to ensure that plug-ins work
together, but there are still things that do not
work together.”

2.3.7 Combination issues

1.3.4 Unit vs integration testing “We think that with a high test coverage through
unit tests, integration tests are not necessary.”1.2.3 Coverage

1.2.1 Key practice: Unit testing

1.3.4 Unit vs integration testing

“Personally, I would like to see integration testing
done in our project. Otherwise, you do not know
whether two parts can work together. But my team
members think di↵erently.”

4.3.1 Automated testing “We are in the special position of being a
framework. This means that if a user downloads
a new version and runs his application based on
ours, then this is already like a test.”

4.3.4 Plug-in symbiosis



KEY QUOTATIONS 179

Participant P21

1.1.4 Hybrid testing

“Automated tests are only created by developers.
Manual testing is done partly by developers. Re-
gression testing is done by someone from the cus-
tomer.”

2.1.1 Workbench dependencies “Our PDE tests do not really look at the
integration of two components. There are often
cases where you actually want to write a unit
test, but then it’s hard to write, because the class
uses something from the workbench. Then, it
does not work anymore. So, that’s why those
tests are not classic integration tests but, from
my point of view, more unit tests that
unfortunately need the platform, and that’s why
they are PDE tests.”

2.1.3 PDE as unit test

3.1.5 Set-up build system

“It is already quite complicated to automate the
JUnit stu↵ to run with the build and make sure
that reporting is working. And then another
framework, I honestly did not want to take the
trouble.”

1.2.9 Fast execution

“The normal unit tests run in seconds. We had
several thousands, but normally they are incred-
ibly fast. And that, you could easily execute during
development.”

3.1.6 Execution time “Our practice is to use normal unit tests every
time we can, because they are much faster
executed. We use PDE tests only if we really
need the runtime.”

1.2.9 Fast execution

2.1.1 Workbench dependencies

3.1.6 Execution time

“We have two test suites: one runs with the plain
JUnit test runner, and the other runs with the
PDE test runner. The split is important, because
we have so many tests and some involve the UI.
During development you can not run the PDE
tests, because they take half an hour to execute.”

2.1.2 PDE as integration test “We use the PDE JUnit framework to write
integration tests, although we are not happy with
it. It’s not really suited for that.”

3.1.8 PDE integration tooling

1.3.7 GUI maintainability

“We put an immense e↵ort into writing UI tests,
and in the end often more test code existed than
code to test. I doubt that makes sense.”

1.3.8 GUI non-tested
“In the current project, we completely abandoned
automatic UI testing.”

Participant P22

2.4.1 Build system “We have several builds to support di↵erent
Eclipse versions. We set-up di↵erent target
platforms to support Eclipse 3.4, 3.5 and 3.6.”

1.3.3 Continuous integration



180 APPENDIX A

2.4.1 Build system

“Most tests must pass on all supported Eclipse
platforms, with some exceptions, like tests that
have to do with the P2 provisioning system.”

3.1.5 Set-up build system “When we set-up the build for Eclipse 3.4 and
3.5, that was clearly a huge e↵ort, until we knew
how to do it. Then, for Eclipse 3.6 the set-up
was okay.”

3.1.4 Plug-in testing knowledge

3.1.5 Set-up build system

“Running OSGi in di↵erent runtime environ-
ments is a complex story which makes it hard to
automate tests. I repeatedly hit a wall trying to
start OSGI in another runtime in such a way that
I can execute the integration tests.”

3.1.5 Set-up build system

“Setting up integration tests with all requirements
can be so complex that I regularly experience
people saying ’that’s not worth the e↵ort’.”

3.1.4 Plug-in testing knowledge

“At the customer site, I am often the expert for
Eclipse, and the rest knows little about it. This is
visible in the testing practice, because often they
don’t know how to write tests that have to do with
Eclipse code, or how to execute them.”

2.2.8 No eclipse integration “We try to keep away from Eclipse when writing
tests. So practice is to have unit tests, which are
the majority of tests. Those are plain Java tests
and they run with JUnit, but do not need Eclipse
or the OSGi runtime. I just do not want to start
Eclipse or OSGi when I quickly want to run the
tests.”

1.2.1 Key practice: Unit testing

3.1.6 Execution time

2.1.1 Workbench dependencies

“Often plain unit tests are not su�cient. There-
fore, we also have test suites that start the
runtime, such as the Eclipse workbench or OSGi.”

1.3.4 Unit vs integration testing “We try to have only few integration tests.”

1.3.4 Unit vs integration testing
“We have two test suites: one with JUnit tests
and one with PDE tests.”

2.2.3 Extension points
“We have dedicated test extensions. A test checks
whether the test extension is loaded and executed.”

Participant P23

3.1.7 Eclipse testability “OSGi wires bundles at runtime, this means a
lot of magic is taking place in the XML
configuration files, and to test those, this is
complicated with traditional test practices.”

3.1.4 Plug-in testing knowledge

3.1.7 Eclipse testability

“We all know that SWT Widgets are hard to
mock. And you only find out about problems at
runtime. To overcome that we use JUnit and
JMock, and the PDE test runner.”

1.3.6 GUI testing
“We have PDE tests for testing the UI, but we try
to have a minimum of logic there.”

1.3.7 GUI maintainability

“Functional tests can become a maintenance
nightmare. So, we try to keep them focused, be-
cause it can become too much for a team to main-
tain.”



KEY QUOTATIONS 181

Participant P24

1.3.1 Test automation

“There has to be a commitment from the customer
to do testing. If the benefits are not visible to the
customer they see it as a waste of time.”

1.2.6 Limited confidence

“We had a problem with some software we de-
veloped. When more than 20 users used the soft-
ware in parallel it crashed. At the same time,
many tests existed for this product which passed.”

Participant P25

2.4.5 Limited versions

“We have trust that the Eclipse core is well tested.
So, we have exactly one version and we do not use
version ranges or variation.”

1.2.1 Key practice: Unit testing “We have a lot of unit tests.”

1.3.1 Test automation
“Integration testing is done only manually, be-
cause it is too complex to automate.”

1.3.3 Continuous integration
“Our unit tests run all the time. We have con-
tinuous integration.”



Index of Codes to Participants

2.4.6
Assert compatibility, P8, P13

4.3.1
Automated testing, P13, P20

2.4.1
Build system, P16, P22

2.3.7
Combination issues, P6, P9, P20

4.4.2
Communication, P4, P7, 8, P12,

13, P16, P19
4.2.5

Compatibility, P7, P9, P19
1.2.5

Confidence, P1, P3, P10, P12, 13
1.3.3

Continuous integration, P3, P5, 6,
P10, 11, P16, P22, P25

1.2.3
Coverage, P5, P7, P10, 11, P20

4.2.9
Customer involvement, P3, P5, P14,

15, P17
2.3.3

Demand driven, P9, P18
1.1.3

Developer testing, P5, P18, 19

3.1.7
Eclipse testability, P1, P5–7, P14,

P23
2.2.6

Eco-system integration, P14
4.3.3

Ecosystem, P16, P20
3.1.2

End user requirements, P7
3.1.6

Execution time, P1, P5, 6, P14,
P17, 18, P20–22

2.2.3
Extension points, P13, P16, P19,

P22
2.4.2

External systems, P17
1.2.9

Fast execution, P1, P6, P14, P20,
21

1.3.5
Fault location, P6, P12

4.2.8
Feedback, P2, P6, P11, P15, P19

4.2.7
Filing bug reports, P9, P11, P16,

P19

182



INDEX OF CODES TO PARTICIPANTS 183

2.2.7
GUI based, P3, P10

4.2.6
GUI community, P17

1.3.7
GUI maintainability, P7, P10, P14,

15, P18, P21, P23
1.3.8

GUI non-tested, P1, 2, P13, P17,
P21

1.3.6
GUI testing, P3, P5, P10, P23

1.3.2
Hardware integration, P5

2.1.4
Headless PDE, P6

1.1.4
Hybrid testing, P3, P14, P21

1.1.1
Issue tracker, P9, P13, P15, P17,

P19
1.2.1

Key practice: Unit testing, P7, P15,
P18, P20, P22, P25

1.2.6
Limited confidence, P3, P5, P7, P24

2.4.5
Limited versions, P8, P14, P16, P25

2.3.4
Manual combinations, P16, P19

4.2.1
Manual testing, P6, 7, P9, P13, P17

2.4.4
Manual versions, P7, P9

2.2.2
Modularization, P3, P5, P18

4.2.4
Multiple versions, P8, 9, P12, P16,

17, P19
2.3.5

No automated cross-tests, P9, P16,
P19

2.4.3
No automated versions, P7, P9

1.2.4
No coverage, P3, P13

2.2.8
No eclipse integration, P15, P22

2.2.1
No influence, P2

4.4.4
Opening closed software, P19

4.2.3
Operating systems, P12, P17, P19

3.1.3
Ownership, P6, 7

2.1.2
PDE as integration test, P6, P21

2.1.3
PDE as unit test, P1, P6, P14, P21

3.1.8
PDE integration tooling, P21

2.3.2
Play nicely, P6

2.3.1
Plug-in independence, P9, P17, 18

4.3.4
Plug-in symbiosis, P11, P16, P19,

20
2.2.5

Plug-in testability, P5, P16, P19
3.1.4

Plug-in testing knowledge, P4, P22,
23

1.2.2
Preference, P1, P6, P18

4.3.5
Providing patches, P6, P11, 12, P19

2.2.4
Registration untested, P16

4.3.2
Release train, P8, P13

4.4.1
Releases, P6, 7, P9, P15, 16, P19

1.1.2
Requirement source, P2, 3, P5, 6,

P12, P16, 17



184 INDEX OF CODES TO PARTICIPANTS

3.1.1
Responsibility, P8, 9

4.1.1
Self-hosting, P17

3.1.5
Set-up build system, P4, P15–17,

P21, 22
4.2.2

Software usage, P9, P15, 16, P19
1.3.1

Test automation, P3, P5, P10–12,
P18, P24, 25

4.4.3
Test request, P16

1.1.5
Tester status, P3, P18

2.4.8
Unfeasible, P12, P16

1.2.8
Unit non-tested, P20

1.2.7
Unit testability, P14, P20

1.3.4
Unit vs integration testing, P1, P6,

P14, P20, P22
2.3.6

Unpredictable, P9, P16
2.4.7

Update rarely, P9, P14
2.1.1

Workbench dependencies, P1, P6,
P14, P21, 22



Zusammenfassung
Unterstützung von Softwareentwicklern beim Verstehen von Softwaretests

Software ist allgegenwärtig und ein Leben ohne sie ist nicht mehr vorstellbar.
Neben alltäglichen Verwaltungsprogrammen gibt es auch Software die es uns
ermöglicht zu fliegen, Krankheiten zu diagnostizieren und Operationen sowie
Banktransaktionen durchzuführen. Durch den umfassenden Einsatz von Software
sind auch die Konsequenzen von fehlerhafter Software weitreichend.

Eine wichtige Maßnahme, um Fehler in Software zu erkennen und die Qualität
einer Software zu bestimmen, ist das Softwaretesten. Hierbei wird die Software
ausgeführt und die Ergebnisse dieser Ausführung werden mit den Erwartungen
verglichen. Stimmen Erwartung und Ausführungsergebnisse nicht überein, wur-
de ein Fehler identifiziert. Das manuelle Ausführen von Testaktivitäten durch
einen Menschen, zum Beispiel das Durchspielen aller möglichen Szenarien einer
Software, ist mühsam, fehlerreich und zeitintensiv. Deswegen wird dieser Prozess
heutzutage immer öfter automatisiert. Hierbei wird wiederum Software erzeugt,
auch Testsystem genannt, deren Aufgabe die Überprüfung der Korrektheit der
eigentlichen Software ist.

Im Laufe der letzten Jahre wurden nicht nur Softwaresysteme komplexer, son-
dern auch deren Testsysteme. Ein Großteil des Softwareentwicklungsaufwandes
wird für das Testen der Software benötigt, und ein beträchtlicher Teil des Soft-
waresystems ist das Testsystem. Die meisten heutigen Softwaresysteme haben
Testsysteme mit mehreren Millionen Zeilen von Testcode. Diese Menge an Test-
code kann sehr schnell unübersichtlich und unverständlich werden, wodurch das
Verstehen und somit auch die Wartung dieser Testsysteme einen erheblichen Auf-
wand verursachen. Speziell modulare und dynamische Systeme erschweren das
Softwaretesten, da mehrere unterschiedliche Parteien (z.B.: Firmen oder Projekt-
teams) an deren Entwicklung beteiligt sind. Dennoch sind diese Systeme heute
weitverbreitet, da sie den Vorteil haben, auch noch nach Inbetriebnahme einfach,
zum Beispiel vom Endanwender, verändert und erweitert werden zu können. Bei-
spiele solcher Systeme sind der Internet Explorer oder der Mozilla Browser, aber

185



186 ZUSAMMENFASSUNG

auch Programme wie Microsoft Word erlauben Benutzern die Erweiterung des
Basissystems.

Um die Arbeitsweisen und die Probleme von Entwicklern während des Soft-
waretesten von solchen Systemen genau zu erfassen, haben wir eine gründliche
Untersuchung durchgeführt, in welcher wir professionelle Softwareentwickler von
mehr als 20 verschiedenen Firmen befragten. Diese Studie zeigte, dass speziell
das Integrationstesten, also das Testen, ob mehrere Komponenten miteinander
korrekt funktionieren, in modularen und dynamischen Systemen schwierig und
zeitaufwendig ist. Deshalb wird diese Aufgabe zum Teil auf die Softwarebenutzer
ausgelagert. Die Interviews zeigten außerdem, dass Softwareentwickler Schwierig-
keiten haben, einen Überblick über alle Softwaretests zu erlangen oder beizube-
halten, relevante Tests oder nicht getestete Funktionalität zu identifizieren, sowie
Tests zu warten. Daraufhin haben wir es uns zum Ziel gesetzt, unterstützende
Techniken und Werkzeuge für Softwareentwickler zu entwerfen.

In dieser Doktorarbeit entwickelten wir vier Techniken, die durch Abstraktion
verschiedene Sichten auf komplexe Systeme und deren Testsystemen ermöglichen,
welche relevante Informationen hervorheben und irrelevante Information ausblen-
den. Die entwickelten Techniken gehören der Familie der Reverse Engineering
Techniken an, welche es erlauben, aus einem bestehenden, fertigen System durch
Untersuchung der Strukturen, Zustände und Verhaltensweisen, die Konstrukti-
onselemente zu extrahieren. Um die Techniken umfassend zu evaluieren und de-
ren Anwendbarkeit, Genauigkeit und Skalierbarkeit zu erfassen, haben wir diese
Techniken in Softwarewerkzeuge implementiert und mit deren Hilfe verschiede-
ne industrielle Systeme analysiert. Außerdem haben wir durch Benutzerstudien
die Meinung von Softwareentwicklern über die Anwendbarkeit und Nützlichkeit
dieser Werkzeuge erfasst. Wir haben uns einer breiten Palette von Untersuchungs-
methoden bedient, um unsere Techniken und Werkzeuge empirisch zu validieren.
Interviews, Umfragen, Grounded Theory, Fallstudien und Data-Mining gehören
zum Methodensortiment. In den meisten Studien kommt eine Kombination meh-
rerer Untersuchungsmethoden zum Einsatz (auch bekannt als Mixed-Method-
Vorgehensweise), da diese eine Triangulation der Ergebnisse ermöglicht, d.h. Schwä-
chen einer Vorgehensweise können mit Stärken der jeweils anderen ausgeglichen
werden. Ein besonderes Augenmerk haben wir auch auf das Miteinbeziehen von
professionellen Softwareentwicklern gelegt, sowie auf die Analyse von industriell
eingesetzten Softwaresystemen.

In dieser Arbeit zeigen wir die Praktiken und Probleme beim Testen von mo-
dularen und dynamischen Systemen auf, und stellen vier Techniken und Werk-
zeuge zur Unterstützung von Softwareentwicklern vor. Unter anderem belegen die
durchgeführten Studien, dass die entwickelten Werkzeuge hilfreich sind, (1) um
Entwickler während des Integrationstestens und des Verstehens und Wartens von
Tests zu unterstützen, (2) Entwicklern, die nicht vertraut mit dem Testsystem
sind, den Einstieg in die Arbeit zu erleichtern, und (3) Schwachstellen in Test-
systemen zu erkennen und zu beheben. Ein verbessertes Verständnis von Tests
führt zu besseren Testsystemen, welche wiederum zu besserer und fehlerfreierer
Software führen.



Samenvatting
Het ondersteunen van ontwikkelaars bij het begrijpen van softwaretests

Software is alomtegenwoordig, en een leven zonder software is niet meer voorstel-
baar. Naast alledaagse administratieve programma’s, bestaat er programmatuur
die ons in staat stelt te vliegen, ziektes te diagnosticeren, en operaties zoals ban-
caire transacties door te voeren. Door deze brede inzet van software zijn echter
ook de gevolgen van foutieve software vergaand.

Een belangrijke maatregel om fouten in software op te sporen en de kwaliteit
van software te bepalen is het testen van software. Hierbij wordt software uit-
gevoerd, en worden de uitkomsten ervan met verwachtingen vergeleken. Komen
de verwachting en de uitkomsten niet overeen, dan is er een fout gevonden. Het
handmatig uitvoeren van testactiviteiten door de mens, bijvoorbeeld het aflopen
van alle mogelijke scenario’s van een programma, is moeizaam, foutgevoelig, en
tijdrovend. Daarom wordt dit proces tegenwoordig steeds vaker geautomatiseerd.
Hierbij wordt een tweede programma ontwikkeld (het zogenaamde testsysteem),
dat als doel heeft correctheid van het eigenlijke softwaresysteem vast te stellen.

In de loop der jaren zijn niet alleen softwaresystemen zelf complexer geworden,
maar ook de bijbehorende testsystemen. Een belangrijk deel van de inspanning
van softwareontwikkeling komt voor rekening van het testen, en een aanzienlijk
onderdeel van het softwaresysteem is het testsysteem. De huidige software sy-
stemen hebben doorgaans testsystemen van meerdere miljoenen regels testcode.
Deze hoeveelheid testcode kan snel onoverzichtelijk en ondoorgrondelijk worden,
waardoor het begrijpen van en daarmee ook het onderhoud aan deze systemen
een aanzienlijke inspanning vergen. Met name modulaire en dynamische syste-
men bemoeilijken het testen, omdat meerdere partijen (bijvoorbeeld bedrijven of
projectteams) bij de ontwikkeling betrokken zijn. Toch zijn deze systemen tegen-
woordig wijdverbreid, omdat zij als voordeel hebben dat zij ook na ingebruikname
gemakkelijk, bijvoorbeeld door een eindgebruiker, aangepast en uitgebreid kunnen
worden. Voorbeelden van dergelijke systemen zijn browsers zoals Internet Explo-
rer of Mozilla, of programma’s zoals Microsoft Word die het gebruikers mogelijk

187



188 SAMENVATTING

maken het basissysteem uit te breiden.
Om de werkwijze en problemen van ontwikkelaars tijdens het testen van der-

gelijke systemen precies te doorgronden, hebben we een uitgebreid onderzoek
uitgevoerd, waarin we professionele softwareontwikkelaars van meer dan 20 ver-
schillende bedrijven hebben ondervraagd. Deze studie toonde aan dat met name
integratietesten (d.w.z. het testen of meerdere componenten correct samenwer-
ken), in modulaire en dynamische systemen moeilijk en tijdrovend is. Om die
reden wordt deze taak gedeeltelijk doorgeschoven naar de softwaregebruikers. De
interviews lieten bovendien zien dat softwareontwikkelaars moeite hebben om het
overzicht over alle softwaretests te verkrijgen en te behouden, om relevante tests
of niet geteste functionaliteit te identificeren, alsmede om tests te onderhouden.
Om dit te adresseren hebben wij ons ten doel gesteld ondersteunende technieken
en gereedschappen voor softwareontwikkelaars te ontwerpen.

In dit proefschrift hebben we vier technieken ontwikkeld, die via abstractie
verschillende perspectieven op complexe systemen en hun testsystemen bieden.
Middels deze perspectieven kan relevante informatie benadrukt en irrelevante
informatie verborgen worden. De ontwikkelde technieken vallen in de categorie
“reverse engineering”, waarmee het mogelijk is om uit een bestaand, afgerond sy-
steem middels een analyse van structuren, toestanden en gedrag, bouwelementen
van het systeem te extraheren. Ten einde deze technieken grondig te evalueren,
en hun toepasbaarheid, nauwkeurigheid, en schaalbaarheid te toetsen, hebben wij
deze technieken in softwaregereedschap gëımplementeerd, en daarmee diverse in-
dustriële systemen geanalyseerd. Bovendien hebben we door gebruikersstudies het
oordeel van ontwikkelaars over de toepasbaarheid en het nut van dit gereedschap
getoetst.

Wij hebben een breed scala aan onderzoeksmethoden toegepast om onze technie-
ken en ons gereedschap empirisch te valideren. Interviews, vragenlijsten, Grounded
Theory, case studies, en data mining horen tot de ons assortiment van methoden.
In de meeste van onze studies passen we een combinatie van verschillende on-
derzoeksmethoden toe (ook bekend als de “mixed-methods”-aanpak), omdat dit
triangulatie van de resultaten mogelijk maakt, d.w.z. dat de beperkingen van de
ene methode verholpen kunnen worden door de sterke punten van de andere.
Hierbij hebben we in het bijzonder aandacht besteed aan het betrekken van pro-
fessionele softwareontwikkelaars in ons onderzoek, alsmede aan de analyse van in
de industrie toegepaste systemen.

In dit proefschrift maken we de praktijk van het testen van modulaire en dyna-
mische systemen inzichtelijk, en laten we zien wat de bijbehorende problemen zijn.
Om deze te adresseren presenteren we vier technieken en bijbehorend gereedschap
ter ondersteuning van softwareontwikkelaars. De uitgevoerde studies laten onder
meer zien dat het ontwikkelde gereedschap (1) ontwikkelaars ondersteunt tijdens
het integratietesten en tijdens het doorgronden en onderhouden van tests; (2) het
ontwikkelaars die niet vertrouwd zijn met het testsysteem makkelijker maakt met
een systeem aan de slag te gaan; en (3) helpt bij het identificeren en oplossen
van zwakke plekken in testsystemen. Een beter begrip van tests leidt tot betere
testsystemen, wat vervolgens leidt tot betere software met minder fouten.



Curriculum Vitae
Michaela Simona Greiler was born on August 30th 1983 in Klagenfurt, Austria.

EDUCATION

December 2008 – April 2013
PhD student at Delft University of Technology, the Netherlands, in the Soft-
ware Engineering Research Group under supervision of Prof. dr. Arie van
Deursen.

April 2012 – August 2012
Visiting Researcher at the University of Victoria, Canada, in the Computer
Human Interaction & Software Engineering Lab - CHISEL group under the
supervision of Prof. dr. Margaret-Anne Storey.

October 2006 – March 2008
Master of Computer Science at the Alpen-Adria University of Klagenfurt,
Austria. Graduated with honours. Thesis: “Secure Resource Sharing in ad
hoc Networks”.

August 2007 – January 2008
Semester abroad at the University of Westminster, London, United Kingdom,
in the Grid Computing Research Group.

October 2002 – October 2006
Bachelor of Computer Science at the Alpen-Adria University of Klagenfurt,
Austria. Focus on software usability, interactive systems, and economics.

1997 – 2002
BR Gymnasium Viktring, Austria. Focus on art. Graduated with distinction.

1994 – 1997
BR Gymnasium Lerchenfeld, Austria. Focus on sport.

189



190 CURRICULUM VITAE

WORK EXPERIENCE

December 2008 – April 2013
Researcher in the Software Engineering Research Group, Delft University of
Technology, The Netherlands.

April 2008 – February 2009
Lecturer and researcher in the System Security Research Group, Alpen-Adria
University of Klagenfurt, Austria.

February 2007 – October 2007
Software Engineer at topmind Web Development, Klagenfurt, Austria.

July 2006 – January 2007
Internship at Flextronics International, Althofen, Austria.

October 2004 – September 2007
Information Technologies Coach at Volkshochschule Völkermarkt, Austria.

January 2004 – June 2006
Software Engineer at topmind Web Development, Klagenfurt, Austria.



Titles in the IPA Dissertation Series since 2007

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural Sci-
ences, Mathematics, and Computer Science,
UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-
urable Network-on-Chip for streaming DSP
applications. Faculty of Electrical Engin-
eering, Mathematics & Computer Science,
UT. 2007-02

M. van Veelen. Considerations on Mod-
eling for Early Detection of Abnormalities
in Locally Autonomous Distributed Systems.
Faculty of Mathematics and Computing Sci-
ences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty of Nat-
ural Sciences, Mathematics, and Computer
Science, UvA. 2007-04

L. Brandán Briones. Theories for Model-
based Testing: Real-time and Coverage. Fac-
ulty of Electrical Engineering, Mathematics &
Computer Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2007-06

M.W.A. Streppel. Multifunctional Geo-
metric Data Structures. Faculty of Mathem-
atics and Computer Science, TU/e. 2007-07

N. Trčka. Silent Steps in Transition Systems
and Markov Chains. Faculty of Mathematics
and Computer Science, TU/e. 2007-08

R. Brinkman. Searching in encrypted data.
Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-09

A. van Weelden. Putting types to good use.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in
Software Development Processes. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2007-11

R. Boumen. Integration and Test plans for
Complex Manufacturing Systems. Faculty of
Mechanical Engineering, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing
and Optimising System Behaviour in Time.

Faculty of Sciences, Division of Mathematics
and Computer Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improving the
Quality of Modeling: A Series of Empirical
Studies about the UML. Faculty of Mathem-
atics and Computer Science, TU/e. 2007-14

T. van der Storm. Component-based Con-
figuration, Integration and Delivery. Faculty
of Natural Sciences, Mathematics, and Com-
puter Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of Soft-
ware Architectures. Faculty of Electrical En-
gineering, Mathematics, and Computer Sci-
ence, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of Mathem-
atics and Computer Science, TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. La Volonté Machinale: Under-
standing the Electronic Voting Controversy.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2008-01

A.L. de Groot. Practical Automaton Proofs
in PVS. Faculty of Science, Mathematics and
Computer Science, RU. 2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Systems.
Faculty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2008-03

A.M. Marin. An Integrated System to Man-
age Crosscutting Concerns in Source Code.
Faculty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-based In-
tegration and Testing of High-tech Multi-
disciplinary Systems. Faculty of Mechanical
Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syntax:
Syntax Definition, Parsing, and Assimilation



of Language Conglomerates. Faculty of Sci-
ence, UU. 2008-06

M. Torabi Dashti. Keeping Fairness Alive:
Design and Formal Verification of Optimistic
Fair Exchange Protocols. Faculty of Sciences,
Division of Mathematics and Computer Sci-
ence, VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing Ma-
chines. Faculty of Mechanical Engineering,
TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coal-
gebras. Faculty of Science, Mathematics and
Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2008-11

M. Farshi. A Theoretical and Experi-
mental Study of Geometric Networks. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2008-12

G. Gulesir. Evolvable Behavior Specific-
ations Using Context-Sensitive Wildcards.
Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-13

F.D. Garcia. Formal and Computational
Cryptography: Protocols, Hashes and Com-
mitments. Faculty of Science, Mathematics
and Computer Science, RU. 2008-14

P. E. A. Dürr. Resource-based Verifica-
tion for Robust Composition of Aspects. Fac-
ulty of Electrical Engineering, Mathematics &
Computer Science, UT. 2008-15

E.M. Bortnik. Formal Methods in Support
of SMC Design. Faculty of Mechanical En-
gineering, TU/e. 2008-16

R.H. Mak. Design and Performance Ana-
lysis of Data-Independent Stream Processing
Systems. Faculty of Mathematics and Com-
puter Science, TU/e. 2008-17

M. van der Horst. Scalable Block Pro-
cessing Algorithms. Faculty of Mathematics
and Computer Science, TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applications. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems
with Data - Enumerative Methods and Con-
straint Solving. Faculty of Electrical En-
gineering, Mathematics & Computer Science,
UT. 2008-20

E. Mumford. Drawing Graphs for Carto-
graphic Applications. Faculty of Mathematics
and Computer Science, TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental Aspects
of Pattern Evaluation. Faculty of Mathemat-
ics and Natural Sciences, UL. 2008-22

R. Brijder. Models of Natural Computation:
Gene Assembly and Membrane Systems. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2008-23

A. Koprowski. Termination of Rewriting
and Its Certification. Faculty of Mathemat-
ics and Computer Science, TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Development.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2008-25

J. Markovski. Real and Stochastic Time
in Process Algebras for Performance Evalu-
ation. Faculty of Mathematics and Computer
Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software Spe-
cification and Verification. Faculty of Elec-
trical Engineering, Mathematics & Computer
Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from Noisy
Data Theory and Applications. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor Net-
works in Motion: Clustering Algorithms for
Service Discovery and Provisioning. Fac-
ulty of Electrical Engineering, Mathematics
& Computer Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Validat-
ing Distributed Embedded Real-Time Control
Systems. Faculty of Science, Mathematics
and Computer Science, RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for



Clean. Faculty of Science, Mathematics and
Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant Soft-
ware Systems. Faculty of Electrical Engin-
eering, Mathematics & Computer Science,
UT. 2009-05

M.J. van Weerdenburg. E�cient Rewrit-
ing Techniques. Faculty of Mathematics and
Computer Science, TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling: Ap-
plications in Automata Theory and Modal Lo-
gic. Faculty of Sciences, Division of Mathem-
atics and Computer Science, VUA. 2009-07

A. Mesbah. Analysis and Testing of Ajax-
based Single-page Web Applications. Faculty
of Electrical Engineering, Mathematics, and
Computer Science, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards Get-
ting Generic Programming Ready for Prime
Time. Faculty of Science, UU. 2009-9

K.R. Olmos Jo↵ré. Strategies for Context
Sensitive Program Transformation. Faculty
of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning about
Java programs in PVS using JML. Faculty of
Science, Mathematics and Computer Science,
RU. 2009-11

M.G. Khatib. MEMS-Based Storage
Devices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Science,
UT. 2009-12

S.G.M. Cornelissen. Evaluating Dynamic
Analysis Techniques for Program Compre-
hension. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based Net-
work Intrusion Detection Systems. Faculty of

Electrical Engineering, Mathematics & Com-
puter Science, UT. 2009-14

H.L. Jonker. Security Matters: Privacy
in Voting and Fairness in Digital Exchange.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engin-
eering, Mathematics & Computer Science,
UT. 2009-16

T. Chen. Clocks, Dice and Processes. Fac-
ulty of Sciences, Division of Mathematics and
Computer Science, VUA. 2009-17

C. Kaliszyk. Correctness and Availability:
Building Computer Algebra on top of Proof
Assistants and making Proof Assistants avail-
able over the Web. Faculty of Science, Math-
ematics and Computer Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness & Com-
pleteness: Formalizing Logic and Analysis in
Type Theory. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2009-19

B. Ploeger. Improved Verification Methods
for Concurrent Systems. Faculty of Mathem-
atics and Computer Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Analysis
of Probabilistic Models. Faculty of Electrical
Engineering, Mathematics & Computer Sci-
ence, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies
for Parameter Optimization and Their Ap-
plications to Medical Image Analysis. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks. Fac-
ulty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty of Math-
ematics and Natural Sciences, UL. 2009-24

A.I. Baars. Embedded Compilers. Faculty
of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Control
for Dynamic Collaborative Environments.
Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-26



J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2010-01

M.R. Neuhäußer. Model Checking Non-
deterministic and Randomly Timed Systems.
Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2010-02

J. Endrullis. Termination and Productivity.
Faculty of Sciences, Division of Mathematics
and Computer Science, VUA. 2010-03

T. Staijen. Graph-Based Specification and
Verification for Aspect-Oriented Languages.
Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2010-04

Y. Wang. Epistemic Modelling and Protocol
Dynamics. Faculty of Science, UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and
Probability in Model Checking Timed Auto-
mata. Faculty of Science, Mathematics and
Computer Science, RU. 2010-06

A. Nugroho. The E↵ects of UML Modeling
on the Quality of Software. Faculty of Math-
ematics and Natural Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of
Science, Mathematics and Computer Science,
RU. 2010-08

J.S. de Bruin. Service-Oriented Discov-
ery of Knowledge - Foundations, Implement-
ations and Applications. Faculty of Mathem-
atics and Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Compon-
ent Connectors. Faculty of Sciences, Divi-
sion of Mathematics and Computer Science,
VUA. 2010-10

M.M. Jaghoori. Time at Your Service:
Schedulability Analysis of Real-Time and
Distributed Services. Faculty of Mathematics
and Natural Sciences, UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty of
Sciences, Department of Computer Science,
VUA. 2011-01

B.J. Arnoldus. An Illumination of the
Template Enigma: Software Code Generation
with Templates. Faculty of Mathematics and
Computer Science, TU/e. 2011-02

E. Zambon. Towards Optimal IT Availabil-
ity Planning: Methods and Tools. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2011-03

L. Astefanoaei. An Executable Theory
of Multi-Agent Systems Refinement. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-04

J. Proença. Synchronous coordination of
distributed components. Faculty of Mathem-
atics and Natural Sciences, UL. 2011-05

A. Moralı. IT Architecture-Based Con-
fidentiality Risk Assessment in Networks of
Organizations. Faculty of Electrical Engin-
eering, Mathematics & Computer Science,
UT. 2011-06

M. van der Bijl. On changing models in
Model-Based Testing. Faculty of Electrical
Engineering, Mathematics & Computer Sci-
ence, UT. 2011-07

C. Krause. Reconfigurable Component Con-
nectors. Faculty of Mathematics and Natural
Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of
Information Leakage in Probabilistic and
Nondeterministic Systems. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2011-09

M. Atif. Formal Modeling and Verifica-
tion of Distributed Failure Detectors. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2011-10

P.J.A. van Tilburg. From Computability
to Executability – A process-theoretic view on
automata theory. Faculty of Mathematics and
Computer Science, TU/e. 2011-11

Z. Protic. Configuration management
for models: Generic methods for model
comparison and model co-evolution. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and Hiding in
Concurrent Processes. Faculty of Mathemat-
ics and Computer Science, TU/e. 2011-13



S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime Enforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-14

M. Ra↵elsieper. Cell Libraries and Verific-
ation. Faculty of Mathematics and Computer
Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Quality
of Service of Component Connectors. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-17

R. Middelkoop. Capturing and Exploiting
Abstract Views of States in OO Verification.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2011-18

M.F. van Amstel. Assessing and Improving
the Quality of Model Transformations. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2011-19

A.N. Tamalet. Towards Correct Programs
in Practice. Faculty of Science, Mathematics
and Computer Science, RU. 2011-20

H.J.S. Basten. Ambiguity Detection for
Programming Language Grammars. Faculty
of Science, UvA. 2011-21

M. Izadi. Model Checking of Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Language
Workbenches. Faculty of Electrical Engin-
eering, Mathematics, and Computer Science,
TUD. 2011-23

S. Kemper. Modelling and Analysis of
Real-Time Coordination Patterns. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-24

J. Wang. Spiking Neural P Systems. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-25

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics and Com-
puter Science, TU/e. 2012-01

A. Middelkoop. Inference of Program
Properties with Attribute Grammars, Revis-
ited. Faculty of Science, UU. 2012-02

Z. Hemel. Methods and Techniques for
the Design and Implementation of Domain-
Specific Languages. Faculty of Electrical En-
gineering, Mathematics, and Computer Sci-
ence, TUD. 2012-03

T. Dimkov. Alignment of Organizational
Security Policies: Theory and Practice. Fac-
ulty of Electrical Engineering, Mathematics &
Computer Science, UT. 2012-04

S. Sedghi. Towards Provably Secure Ef-
ficiently Searchable Encryption. Faculty of
Electrical Engineering, Mathematics & Com-
puter Science, UT. 2012-05

F. Heidarian Dehkordi. Studies on Veri-
fication of Wireless Sensor Networks and Ab-
straction Learning for System Inference. Fac-
ulty of Science, Mathematics and Computer
Science, RU. 2012-06

K. Verbeek. Algorithms for Cartographic
Visualization. Faculty of Mathematics and
Computer Science, TU/e. 2012-07

D.E. Nadales Agut. A Compositional
Interchange Format for Hybrid Systems:
Design and Implementation. Faculty of
Mechanical Engineering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-Protein
Interaction Networks by Means of Annotated
Graph Mining Algorithms. Faculty of Math-
ematics and Natural Sciences, UL. 2012-09

S.D. Vermolen. Software Language Evol-
ution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches to
Reliable Software. Faculty of Mathematics
and Computer Science, TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Mod-
els – An Engineering Perspective. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2012-12

W. Heijstek. Software Architecture Design
in Global and Model-Centric Software Devel-
opment. Faculty of Mathematics and Natural
Sciences, UL. 2012-13

C. Kop. Higher Order Termination. Faculty
of Sciences, Department of Computer Science,
VUA. 2012-14



A. Osaiweran. Formal Development of
Control Software in the Medical Systems Do-
main. Faculty of Mathematics and Computer
Science, TU/e. 2012-15

W. Kuijper. Compositional Synthesis of
Safety Controllers. Faculty of Electrical En-
gineering, Mathematics & Computer Science,
UT. 2012-16

H. Beohar. Refinement of Communication
and States in Models of Embedded Systems.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2013-01

G. Igna. Performance Analysis of Real-
Time Task Systems using Timed Automata.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2013-02

E. Zambon. Abstract Graph Transforma-
tion – Theory and Practice. Faculty of Elec-
trical Engineering, Mathematics & Computer
Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Response
Applications. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2013-04

G.T. de Koning Gans. Outsmarting Smart
Cards. Faculty of Science, Mathematics and
Computer Science, RU. 2013-05

M.S. Greiler. Test Suite Comprehension
for Modular and Dynamic Systems. Faculty
of Electrical Engineering, Mathematics, and
Computer Science, TUD. 2013-06






