
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/234803444

Evaluation of online testing for services

Article · January 2010

DOI: 10.1145/1808885.1808893

CITATIONS

17
READS

67

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Poseidon View project

Michaela Greiler

Microsoft

18 PUBLICATIONS 283 CITATIONS

SEE PROFILE

Hans-Gerhard Gross

Esslingen University

76 PUBLICATIONS 875 CITATIONS

SEE PROFILE

All content following this page was uploaded by Hans-Gerhard Gross on 20 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/234803444_Evaluation_of_online_testing_for_services?enrichId=rgreq-eaeaaf69181950c14d646b8ea87259c0-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgwMzQ0NDtBUzo5ODc5NDYyNDUyMDE5NEAxNDAwNTY1ODgyMjM2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/234803444_Evaluation_of_online_testing_for_services?enrichId=rgreq-eaeaaf69181950c14d646b8ea87259c0-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgwMzQ0NDtBUzo5ODc5NDYyNDUyMDE5NEAxNDAwNTY1ODgyMjM2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Poseidon-5?enrichId=rgreq-eaeaaf69181950c14d646b8ea87259c0-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgwMzQ0NDtBUzo5ODc5NDYyNDUyMDE5NEAxNDAwNTY1ODgyMjM2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-eaeaaf69181950c14d646b8ea87259c0-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgwMzQ0NDtBUzo5ODc5NDYyNDUyMDE5NEAxNDAwNTY1ODgyMjM2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michaela_Greiler?enrichId=rgreq-eaeaaf69181950c14d646b8ea87259c0-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgwMzQ0NDtBUzo5ODc5NDYyNDUyMDE5NEAxNDAwNTY1ODgyMjM2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michaela_Greiler?enrichId=rgreq-eaeaaf69181950c14d646b8ea87259c0-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgwMzQ0NDtBUzo5ODc5NDYyNDUyMDE5NEAxNDAwNTY1ODgyMjM2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Microsoft?enrichId=rgreq-eaeaaf69181950c14d646b8ea87259c0-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgwMzQ0NDtBUzo5ODc5NDYyNDUyMDE5NEAxNDAwNTY1ODgyMjM2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michaela_Greiler?enrichId=rgreq-eaeaaf69181950c14d646b8ea87259c0-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgwMzQ0NDtBUzo5ODc5NDYyNDUyMDE5NEAxNDAwNTY1ODgyMjM2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hans-Gerhard_Gross?enrichId=rgreq-eaeaaf69181950c14d646b8ea87259c0-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgwMzQ0NDtBUzo5ODc5NDYyNDUyMDE5NEAxNDAwNTY1ODgyMjM2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hans-Gerhard_Gross?enrichId=rgreq-eaeaaf69181950c14d646b8ea87259c0-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgwMzQ0NDtBUzo5ODc5NDYyNDUyMDE5NEAxNDAwNTY1ODgyMjM2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hans-Gerhard_Gross?enrichId=rgreq-eaeaaf69181950c14d646b8ea87259c0-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgwMzQ0NDtBUzo5ODc5NDYyNDUyMDE5NEAxNDAwNTY1ODgyMjM2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hans-Gerhard_Gross?enrichId=rgreq-eaeaaf69181950c14d646b8ea87259c0-XXX&enrichSource=Y292ZXJQYWdlOzIzNDgwMzQ0NDtBUzo5ODc5NDYyNDUyMDE5NEAxNDAwNTY1ODgyMjM2&el=1_x_10&_esc=publicationCoverPdf

Evaluation of Online Testing for Services – A Case Study

Michaela Greiler, Hans-Gerhard Gross and Arie van Deursen
Software Engineering Research Group

Delft University of Technology
Mekelweg 4, Delft, The Netherlands

{m.s.greiler|h.g.gross|arie.vanDeursen}@tudelft.nl

ABSTRACT
Service-oriented architectures (SOAs) have found their ways
into industry to enable better business-to-business coopera-
tion. With the advent of SOA, new challenges for software
development and testing also appeared. In this article, we
motivate the need for SOA online testing and show how
it can reveal faults that slipped offline testing. The paper
outlines a case study in which online testing has been im-
plemented as proof-of-concept, but also evaluated in terms
of its effectiveness to identify typical SOA runtime reconfig-
uration problems according to an existing fault taxonomy.
The experiments of the case study demonstrate that online
testing (1) can detect many typical runtime reconfiguration
faults, and that (2) online testing provides additional value
over offline testing.

Keywords
Online Testing; SOA Testing; Service Testing; SOA Recon-
figuration; Integration Testing;

1. INTRODUCTION
Service-oriented architectures (SOAs) are increasingly

emerging as backbone platforms for information and com-
munication technology (ICT) infrastructures of enterprises
and organizations, because of their dynamic nature, their
loose coupling of components and sub-systems, their adapt-
ability to changing business requirements, and their recon-
figurability. Organizations migrate their systems-of-systems
to SOA, in order to become more federated and service-
oriented, and in order to align ICT evolution with busi-
ness development. Examples of such systems-of-systems are
safety and security systems, railway and aviation control sys-
tems, toll collect systems, online banking and trading sys-
tems, enterprise resource management and logistic systems,
and multi-tenant systems.

Testing such systems-of-systems is aggravated by stake-
holder separation and dynamic features provided by SOA
infrastructures. Stakeholder separation turns third party

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

services into black-boxes for integration testers, and limits
their influence in system evolution and maintenance. Ad-
ditionally, dynamic features, like ultra-late binding or dy-
namic composition of services, allow a flexible and dynamic
way of composing a concrete system at runtime, but restrict
the ability to test it a-priori. The context in which a ser-
vice will be used is likely unknown at service development
time, imposing problems for service testers to predict and
foresee possible requirements and usage scenarios. The lim-
ited testability of service-oriented systems imposes the need
of reconsidering and redesigning traditional, and inventing
new testing methods and processes, moving activities from
design time to runtime, as mentioned in [6, 9, 13, 17].

In this paper, we demonstrate the need for online testing,
i.e., testing in the realm of the production system in parallel
to its operational performance. Online testing is applied in
addition to offline testing, in order to deal with faults that
could not be addressed before. The scope of online testing
excludes tests that can be done offline, like full behavioral
tests of services.

The main contributions of this paper are (1) a case study
demonstrating the capabilities of online testing to detect
faults during system reconfiguration that could not be ad-
dressed in the test environment, and (2) an evaluation of
the results including a discussion on open issues and lessons
learned from the case study.

Online testing is demonstrated in a concrete dynamic
SOA, namely the Open Services Gateway Initiative1 (OSGi
Alliance) framework. A small case study of a distributed
sensor network which is part of a traffic control system is
used as proof-of-concept. Within this case study, the ability
of online testing to detect runtime reconfiguration faults is
evaluated according to the SOA fault taxonomy by Bruning
et al. [5]. We outline open issues and research directions of
performing service integration tests during operation time
in the context of SOA environments.

Section 2 gives an overview of existing research. Section 3
outlines briefly our online testing approach. The case study
is presented in Section 4, followed by an evaluation in Section
5. We conclude in Section 6 and give an outlook on future
work.

2. RELATED WORK AND BACKGROUND

2.1 Online Testing
Online testing is applied in order to assess a new service

in the context of the actual system in which it is going to

1http://www.osgi.org
PESOS ’10, May 1-2, 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-963-3/10/05 ...$10.00.

36

operate, according to its real usage. Similar to online test-
ing is in vivo testing [8], also dubbed as perpetual testing2,
used to assess live applications after deployment. While in
vivo testing focuses on performing unit tests, we focus on
integration testing of service compositions.

The scope of the test naturally affects the test approach,
the test cases required, and their number. Online testing
does not replace offline integration testing, but offers an effi-
cient approach to address reconfiguration faults that cannot
be identified in the offline test environment.

Infrastructures and Testability. Some work has fo-
cused on infrastructures for testing component-based soft-
ware online, such as in Vincent et al. [20], Suliman et al.
[18], and Gonzalez et al. [11]. All use built-in testing, asso-
ciating tests with components [14]. These tests are used by
other components to assess a subject under test (SUT), or
by the component itself to validate its peers.

While executing tests in the production system, unde-
sired side effects (the problem of test sensitivity) have to
be avoided. This requires test isolation which builds on test
awareness, i.e., components must be aware that they are
being tested [4, 11, 13, 14, 19].

Integration Testing of SOA. Research in service-
oriented testing has gained a lot of interest [7]. Also the
field of online testing has been addressed, e.g., Bertolino et
al. [1, 2]. They suggest that the originally passive registry
should take over an active audition role. The audition phase
takes place before the service is listed in the registry, and
is performed by a central instance, checking the correctness
of a service against its specification. The services already
active in the SOA do not take part in the testing process.
In our online testing approach the service implementation
is not checked against its own specification, but against the
expectation (specification) of another requesting service.

Heckel et al. [15] discuss an approach, in which a central
third party, called the discovery agency, checks that a ser-
vice conforms with its specification, i.e., a model, before it
is registered. Later on, other services can discover the reg-
istered service and can compare their requirements against
the model provided by the service. This assures conformance
of description and implementation of a service, by perform-
ing full functional and behavioral tests. Their assumption
is that the service could be faulty, either unintentionally be-
cause of insufficient testing, or intentionally for introducing
malicious services. In constrast to a full behavioral test, our
online testing merely focuses on integration faults that are
not easily caught using just offline testing.

2.2 Service-Oriented Faults
Fault models and fault trigger schemes are useful to high-

light faults that are predestined to appear in certain types
of systems [3]. For evaluating the fault finding capabilities
of online testing, we focus on a fault taxonomy by Bruning
et al., which is specific to service-oriented architectures [5].
As we will see in Section 5, these service-related faults are
of special interest for our research, because they are likely
to happen during runtime (re-)configuration. In the paper,
we will refer to those faults as reconfiguration faults.

The taxonomy, summarized in Table 1, spotlights faults
directly connected to the five characteristic phases in a SOA:
service publication, service discovery, service binding, ser-
vice composition, and service execution.

2http://www.ics.uci.edu/∼djr/edcs/PerpTest.html

3. ONLINE TESTING FOR SERVICES

3.1 Online Testing Process
During online testing a test is triggered, whenever the

system undergoes a reconfiguration.
As a first step, the new service will be deployed, in parallel

to the old version, in the production system, but does not
publish its service yet. Other services will not use it for
nominal requests. Each service comprises a test suite to
assess proper functionality of required peers.

Then the test suite of the new service will be executed.
The test suite is checking proper communication and coop-
eration between itself and other acquired services, whenever
the environment changes.

The testing activities address three main phases, each
phase comprising a set of test cases:

1. Discovery Tests check whether all required services can
be discovered , and whether the services found are the
services expected.

2. Binding Tests check whether all required services can
be bound , and conform to the (syntactic) expectations
(according to service description).

3. Composition Tests execute required services and
assess whether expectations about sequential con-
straints, i.e., the protocol, between message invoca-
tions are fulfilled. Simple input-output relations in-
cluding return values can also be assessed, as well as
non-functional requirements (e.g., timing).

If all tests have passed, the operational service is started,
and can replace the previous version. If a test fails, the
service will not be registered.

A test suite is detached from the service code, in order to
be able to update the test cases independent of the service.
This permits evolution of the testing code together with the
evolution of the system. Examples of concrete test cases, in
particular for OSGi, for each phase are given in Listing 1.

Listing 1: Examples for the Test Case Classes
/∗ Checks whether the service required can be found under this
∗ name in the service registry ∗/
public void testDiscover() {

String name = IService.class.getName();
ServiceReference ref = getServiceReference(name);
assertNotNull(‘‘The Service Reference ’’ + name

+ ‘‘ cannot be found’’, ref);
tService = (IService) getContext().getService(ref);
assertNotNull(‘‘The Service ’’ + name

+ ‘‘ cannot be retrieved’’, tService);...}

/∗ Checks whether the service has all the expected methods ∗/
public void testBinding() {

try {
tService.getInformation(null);

} catch (AbstractMethodError e) {
Assert.fail(‘‘Method getInformation is missing’’);}...}

/∗ Checks whether the invocation sequence expected is correct
∗ and adds simple expectations for return values ∗/
public void testComposition() {

User u = new User();
assertTrue(tService.register(u, ‘‘topic’’));
assertNotNull(tService.getInformation(u));
assertTrue(tService.unRegister(u));...}

37

Category Forms

Publishing Fault Incorrect Service Description, or Service Deployment
Discovery Fault Discovering no Service, or the Wrong Service
Composition Fault Missing or Incompatible Components, or Non-fulfilled Service

Contracts
Binding Fault Binding Denied, or Bound to Wrong Service
Execution Fault Service Crashed, or Incorrect Results

Table 1: Summary of Service-Oriented Fault Taxonomy by [5]

��������	�
����

��������

������������

������	�

�������

������������

������	�

����������������	���

������� ��
��������

�����
�
�����������������

����������������	���

������� ��
���������

����������������� �����������������

��������

�������������������	�

�������� �� ��������

Figure 1: Inconsistent Interfaces in Registry

3.2 Testability Facilities
Controllability and observability are two important char-

acteristics to allow efficient testing. Especially during on-
line testing, it can be crucial that the system is aware of
the test activities, and isolates test invocations accordingly.
To meet these demands, a service comes in two forms: (1)
the operational service, serving nominal requests, and (2)
the testable service, allowing other components to test the
service. The testable service extends the operational service
(inheritance or delegation), following the adapter design pat-
tern [10]. The main purpose of the testable version is to im-
prove testability by providing test isolation, and enhancing
controllability and observability.

The fact that service objects for testing and production
are different helps to avoid interferences between testing a
service and operating it normally. The extension mechanism
permits to overwrite test sensitive parts with side-effect-free
implementations.

4. CASE STUDY
We have devised an explorative case study, following Yin

[21], as proof-of-concept, and in order to demonstrate, study,
and evaluate the fault finding capabilities of online testing.
Although, the code of the system of the case study is con-
fidential, a small example application can be downloaded3,
which contains the whole infrastructure.

4.1 Case Study Design
The system used for this case study is based on a vessel

tracking and surveillance system, named OVTS (OSGi ves-
sel tracking system), consisting of a sensor network and sev-
eral components that relay, manage, and display messages
sent by vessels4.

3http://swerl.tudelft.nl/bin/view/ARTOSC/Software
Distribution
4The vessel tracking system in question has also been used
as a case study in [11] and [12].

Goal. The goal of the case study is to assess the capabil-
ities of online testing to find typical reconfiguration faults,
following Bruning et al. [5].

Approach. First, the original system has been extended
with testability infrastructure. Furthermore, as a typical
reconfiguration scenario, the system’s functionality has been
enhanced with capabilities to monitor the Quality of Service
of the sensor network. During reconfiguration, a number of
faults were seeded to assess the fault detection capabilities.

Key Metrics and Execution Environment. The spe-
cific OSGi framework used was the Apache Felix 1.8 imple-
mentation. The OVTS system comprises 6 key bundles (in-
cluding the enhanced visualizer), 1 utility bundle, 2176 lines
of code, and 41 classes. 349 lines of code were dedicated to
testing and test isolation. We implemented 39 test cases for
the visualizer, consisting of 290 lines of code, based on the
three test classes described in Section 3.1.

Units of Analysis. The main concern of the case study
is the assessment of the detection rate for the seeded faults.
For detected faults, we trace how they have been found, and
for missed faults we analyze why they could not be detected.
In addition, we evaluate the support of the OSGi execution
environment to prevent inconsistencies in the overall system.

Research Questions Addressed. The case study was
conducted to answer the following research questions:

RQ 1: “Which typical reconfiguration faults can be de-
tected with online testing as presented?”

RQ 2: “Which faults cannot be detected?”
RQ 3: “To what extent are these faults attributed to the

current state and configuration of the production system?”

4.2 The Subject System
The vessel tracking system comprises a number of radio

base stations, a Merger service, a Filter service, and a Visu-
alizer service in the control centre, as illustrated in Figure
2. The main purpose of the Visualizer is to display vessels
and their tracks on a screen. Base stations receive messages
from vessels, indicating properties like position, speed, time,
identification, etc. The base stations transmit the messages
to the Filter component in order to eliminate duplicate mes-
sages, because some base stations cover overlapping areas.
Messages are relayed to the Merger service which acts as a
server for sensor data. Clients, such as the Visualizer, can
connect to it and subscribe to sensor data of a particular
vessel for track information. The system is connected to a
simulator providing real vessel sensor data. That way, the
sensor network can be executed and tested as if it was in the
real production environment.

4.3 Reconfiguration Scenario
The update requirement for the surveillance system is to

add a Quality of Service (QoS) monitor and connect it to all

38

Merger
Visualizer

Base�Stations FilterSimulator

OSGi

Service Service Service Service Service

Figure 2: System Architecture

base stations in order to analyze the quality of the received
messages, for provision of system health information. The
existing services are reconfigured, so that the QoS service
becomes part of the Visualizer component, leading to a test
of the Merger by the test suite of the new Visualizer service.

4.4 Observations
While performing the system evolution scenario, we

seeded a number of faults in the system in order to assess
online testing.

Fault Finding Capabilities. We seeded faults out of
every fault category defined in [5]. Table 2 summarizes the
results of the experiments by stating the fault category, the
specific form of fault, and the test class, as defined in Section
3, detecting this fault, or “X” if undetected.

Publishing Faults. Service description faults, either
by missing features or incomplete descriptions, have been
seeded in the system. For example, the new version of the
service registered itself under a wrong service interface name.
This fault was immediately detected by the OSGi frame-
work when the new service was attempting to start, and the
start was prohibited by the execution environment5. An-
other publishing fault based on a mismatch between service
description and service was introduced when the service ex-
pected more features (e.g., methods) from a required service
than were provided. This fault was detected by a binding
test, assessing whether all expected methods exist.

Discovery Faults. We introduced faults in the discovery
process, e.g., by implementing a wrong look-up query. As
a result, the required service was not found. The fault was
detected by a discovery test, checking whether required ser-
vices can be found. Modifying the discovery query to look
for an existing but wrong service, would lead to an exection
failure. However, a discovery test detected that casting the
service found to the expected service will raise an error.

Composition Faults. Such a fault was introduced by
deviating from a contract incorporating response time, e.g.,
by reducing the time tolerance for a response from Merger.
The fault was found by a composition test concentrating
on response time for a data request. Another composition
fault, introduced by changing the sequential constraints of
the Visualizer, caused a violation of Merger ’s protocol. The
Visualizer expected the Merger to provide data, without
registering for a specific vessel. This fault was found by a
composition test, exercising a typical protocol sequence.

Binding Faults. Binding can be denied because of insuf-
ficient security, authentication, accounting or authorization
problems. By changing a service into requiring authentica-
tion before requesting data, the expected protocol sequence
was changed. The other service was expecting to be able to
request data without authentication, which violated an as-
sertion in a composition test, checking typical protocol con-
straints. Another binding fault was introduced by changing

5Some execution platforms will not detect this automati-
cally, thus requiring an additional test.

the implementation of a method. The service provided all
methods described in the interface, but the expected be-
havior of the implementation did not match with the ac-
tual functionality. The results provided by the service were
wrong, but this could not be detected by our tests.

Execution Faults. An execution fault, in form of a re-
quired service crashing before or while testing, can be found
by either a composition test, by a binding test or by a dis-
covery test, depending on the time the service crashes. We
seeded further faults, by returning incorrect results, e.g., by
changing the implementation of a method in the Merger to
return all vessel information instead of a specific one. This
fault could not be found during online testing.

5. DISCUSSION AND EVALUATION

5.1 SOA and Runtime Reconfiguration Faults
In this section, we discuss the results of the case study

with respect to the relevance of online testing vs. offline
testing.

Publishing Faults. Checking syntax and format of the
service description can be easily done offline. Also checking
consistency of service interface (description) and implemen-
tation is done offline, during compilation time. In OSGi, a
service description, represented by an interface or a class,
has to be syntactically correct and in the right format to
allow successful compilation of the service. Also the service
implementation has to match the specific interface.

On the other hand, publishing faults can occur during
runtime in the production environment, because the system
changes and inconsistencies between service interfaces occur.
In OSGi, different services can be registered under the same
interface name, as long as they are implementing this inter-
face but it is not checked (e.g., by the registry) whether the
service interfaces, registered in the environment, are con-
sistent, as illustrated in Figure 1. Hence, it is possible to
register the same interface with completely different charac-
teristics, e.g. number of methods, parameters, return values.
The proposed binding tests are sufficient to check whether
services are consistent with the expected service description.

Discovery Faults. Correct syntax of discovery queries
can be tested offline. On the other hand, a test checking that
all required services are deployed and can be found, based
on the query, can have different outcomes in the production
and the test environment. Online testing can support find-
ing missing services or wrong service look-ups or ambiguous
queries in the production environment by execution of dis-
covery tests.

Composition Faults. Composition faults are likely to
occur online, because services may have been mocked in the
testing environment or are missing in the production envi-
ronment, and thus incompatibilities could not be foreseen.
Composition tests cover service compositions by executing
typical protocol sequences as expected by the test case. We
found deviations from the protocol. It is often sufficient to
perform typical scenarios to identify protocol mismatches,
e.g., typical correct and incorrect sequences. Testing all pos-
sible permutations of test invocations can produce a large
number of test cases.

Furthermore, a composition can be faulty, because of non-
functional issues in the production environment. In our case
study, we assessed service response. This can be caught with
composition tests.

39

No. Fault Class Form of Fault Found by

1 Publishing Fault Service Description Fault Binding Test
2 Publishing Fault Service Deployment Fault Binding Test
3 Discovery Fault No Service Found Discovery Test
4 Discovery Fault Wrong Service Found Discovery Test
5 Composition Fault No Valid Composition Composition Test
6 Composition Fault Composition Faulty Composition Test
7 Binding Fault Binding Denied Composition Test
8 Binding Fault Bound to Wrong Service X
9 Execution Fault Service Crashed Discovery Test
10 Execution Fault Incorrect Result X (Unit Tests)

Table 2: Fault Classes, Fault Forms and Test Cases

Binding Faults. Online testing adds benefits if not all
authentication, authorization, and security configurations
have been properly reproduced in the testing environment.
Denied binding faults have been found by composition tests,
looking either for invocation sequences or for expected out-
put values.

Wrong service bindings can occur in the final environment,
e.g., because multiple services match an ambiguous query.
In some scenarios, the fault has been found based on simple
assumptions about the output.

In general, these faults are hard to detect, if the syntax of
service interfaces match.

Execution Faults. If a service crashes before a test is
invoked, discovery tests will detect a missing required ser-
vice. If a service crashes while testing, it will be detected
by binding or composition tests. Execution faults leading
to wrong results, are hard to find online. These are typical
issues to be addressed in offline/unit testing.

5.2 Research Questions Revisited
RQ1: Which faults can be detected by online testing? It

can indeed detect typical publishing, and discovery faults,
like missing services, and inconsistencies among different
service descriptions and implementations. These are typi-
cal issues appearing in dynamically evolving systems. Com-
position faults, violating timing constraints, are difficult to
identify offline due to specific service compositions which are
hard to reproduce in an offline testing environment. Online
testing on the other hand is efficient to detect those faults.

RQ 2: Which faults cannot be found by online testing?
The case study showed that online testing is not effective in
finding all protocol deviations.

Nevertheless, by testing typical protocol sequences, obvi-
ous mismatches can be identified. Execution faults repre-
senting incorrect results provided by services could not be
found; this should be done offline.

RQ 3: How are faults related with the specific state and
configuration of the production system? Both fault types,
publishing and discovery, are an effect of the specific state
and configuration of the production system which is not re-
producible in an offline testing environment assuming clean
initial state and configuration. For example, OSGi keeps re-
quired packages in the environment even though they have
been uninstalled. Further, these packages are hidden, mean-
ing that they do not appear in the list of installed packages
anymore. Reproduction of such an environment would re-
quire that the history of all installation activities and con-
figurations is reproduced in an offline test setting.

5.3 Research Directions and Open Issues
Performance and Adequacy. In the case study, we did

not observe any performance, or resource problems caused
by online testing. In more complex systems they might well
occur, leading to the question of an adequate online testing
framework providing test isolation, observability and con-
trollability, and an adequate or minimal test suite to be
invoked online. Online tests are not meant to be full behav-
ioral tests or replace offline/unit testing. They should only
address issues that can go wrong in a running and evolving
system. Nevertheless, protocol deviations and incorrectly
bound services require more extensive test suites for their
detection. Future research must study the tradeoffs.

5.4 Threats to Validity
The closed nature of the case study constitutes a threat to

reliability (repeatability). To address this, we tried to be as
explicit as possible in our description of the case study de-
sign and provide a downloadable example system. Another
important threat to the validity of our case study concerns
the external validity, i.e., the extent to which the results can
be generalized [21]. This gives rise to the following consid-
erations.

Generalization for SOA. OSGi might not be consid-
ered as a full-scale SOA. However, while looking for an ex-
perimental environment, we saw several advantages. OSGi
is relatively small, which makes understanding and observ-
ing the behavior easier and more reliable, and it inherits all
main characteristics of a general service-oriented architec-
ture: application frontend, service, service repository, and
service bus [16]. Furthermore, OSGi technology is used as a
basis for all main SOA infrastructure products and systems,
like IBM with IBM Websphere, Sun with Glassfish, IOAN
with Artix and FUSE, WSO2 with Carbon, and SOPERA
ASF that offer Eclipse Swordfish, a modular and distributed
SOA framework6. In addition, OSGi bundles can directly
be deployed as services in other SOA products, like in Sun’s
Glassfish7.
Application Size and Architecture. The method pre-

sented was applied only in one case study, quite small in
nature. Two related concerns have to be addressed: first,
larger and more complex systems might be too expensive to
be enhanced with online testing infrastructure. This could
be addressed through careful consideration of test sensi-
tive parts, i.e. what is an adequate/minimal online test-

6http://www.eclipse.org/equinox-portal/quotes.php
7http://blogs.sun.com/dochez/entry/glassfish
v3 extensions part 4

40

ing framework?, or through code/test case generation. For
discovery tests and binding tests, this can be done with-
out additional enhancements. Generating composition tests
requires a model describing input-output expectations and
sequential constraints for method invocations.

Representativeness of faults. One could argue that
the faults observed are specific to OSGi, and application
dependent, and not representative for service-oriented ar-
chitectures in general. To address this threat we based our
evaluation on a service-oriented fault taxonomy. The fault
taxonomy is domain independent, because it focuses explic-
itly on faults that appear during the five characteristic steps
in SOAs. Most of the faults observed have been caused by
the internal state of OSGi, that is e.g., the set of installed
and active services or available packages and their wiring to
components. We expect that similar faults can be observed
in any other platform.

On the other hand, the results of the case study indicate
some shortcomings in the fault taxonomy, that are discussed
in the following section.

5.5 Lessons learned
Online versus Offline Testing. An important issue ad-

dressed in this paper is the different faults detected online
or offline. In our study, all services were able to compile
and passed unit as well as integration tests in the test envi-
ronment, which reflected the developer’s expectations about
the production system.

Some seeded faults, like incorrect functionality of a ser-
vice, representing execution faults, should have been caught
by offline testing. Online testing does not focus on revealing
this kind of faults.

An incorrect look-up query, representing a discovery fault,
can be found by offline testing only if the query discovers a
wrong service. For ambiguous queries, this is not the case.
These queries could find one service in the test environment,
but more than one service in the production environment.

Faults representing wrong expectations in provided infor-
mation, like signature, are only introduced if the production
environment does not impose those expectations. Theoret-
ically, the testing environment should be equivalent to the
production environment, which is not achievable in reality.

Finally, application tolerance is a problem that cannot
always be addressed adequately in test environments. Ap-
plication tolerance stands for the tolerance of multiple ap-
plications for each other. If applications are not isolated
completely, by e.g., accessing the same parts of a file system,
faults can occur. To address this problem, a test environ-
ment would have to represent all programs existing in the
production environment, which is in many cases infeasible.

Shortcomings of the fault taxonomy. By analyzing
the faults detected in the case study, we found out that the
categorization of the fault classes does not reflect faults but
concentrates on failures. Especially for faults in the later
phases in a SOA, like execution and composition, the faults
described are in reality effects of faults from earlier phases,
propagated to later phases and then manifested as failures.
Faults during update and removal of services are also not
addressed.

Shortcomings in the OSGi framework. The support
for consistency management in the OSGi environment is lim-
ited. The OSGi framework recognizes whenever a service is
published under a wrong service interface, i.e., an interface

that it does not implement. OSGi does not manage consis-
tency between several interfaces with the same name. This
is a problem because discovery queries are based on the in-
terface name of a service. This means that every service
registered under the interface name “IService”, independent
of the signature of the interfaces, will be found by a ser-
vice querying for a service implementing “IService”. Figure
1 illustrates the registration and as a consequence also the
discovery of “IService”-services by a consumer. The con-
sumer gets both services (ServiceA and ServiceB) regardless
of their signature.

6. SUMMARY, CONCLUSION & FUTURE
WORK

In this paper, we presented a case study demonstrating the
capabilities of online testing to detect faults/failures dur-
ing system reconfiguration that could not be found offline
in a “traditional” test environment. We devised a proof-
of-concept, seeded typical SOA faults, in order to evaluate
our online testing in terms of effectiveness to identify such
faults. The outcome of the case study suggests that typical
reconfiguration faults can be found through online testing,
and that online testing has additional value over mere of-
fline testing. For example, inconsistencies in the execution
environments can be detected, and mismatches between ex-
pectation and reality can be uncovered. Further, the case
study indicated that the real operational system state and
configuration is not tested adequately offline.

As a next step, we will apply online testing to other SOA
infrastructures, in particular the IBM product suite, and
further evaluate it with different systems. Primary activities
planned for future research are (1) to expand the fault seed-
ing experiment to other execution environments and case
studies, (2) to establish a taxonomy representing faults nat-
urally appearing in the production environment, and (3) to
gain empirical evidence concerning the effectiveness of the
proposed approach.

7. ACKNOWLEDGMENTS
We would like to acknowledge Alberto Gonzalez and Eric

Piel for providing insights into their work on Atlas, that
helped to realize the concepts and case study discussed in
this paper. This work has been funded by the Dutch Govern-
ment through the Jacquard program (www.jacquard.nl).

8. REFERENCES
[1] A. Bertolino, G. Angelis, L. Frantzen, and A. Polini.

The PLASTIC framework and tools for testing
service-oriented applications. In Software Engineering:
International Summer Schools, ISSSE 2006-2008,
Salerno, Italy, Revised Tutorial Lectures, pages 106 –
139, Berlin, Heidelberg, 2009. Springer-Verlag.

[2] A. Bertolino, L. Frantzen, A. Polini, and J. Tretmans.
Audition of web services for testing conformance to
open specified protocols. In Architecting Systems with
Trustworthy Components, pages 1–25. Springer, 2006.

[3] R. V. Binder. Testing Object-Oriented Systems:
Models, Patterns, and Tools (The Addison-Wesley
Object Technology Series). Addison-Wesley
Professional, October 1999.

41

[4] D. Brenner, C. Atkinson, O. Hummel, and D. Stoll.
Strategies for the run-time testing of third party web
services. In SOCA ’07: Proceedings of the IEEE
International Conference on Service-Oriented
Computing and Applications, pages 114–121,
Washington, DC, USA, 2007. IEEE Computer Society.

[5] S. Bruning, S. Weissleder, and M. Malek. A fault
taxonomy for service-oriented architecture. In HASE
’07: Proceedings of the 10th IEEE High Assurance
Systems Engineering Symposium, pages 367–368,
Washington, DC, USA, 2007. IEEE Computer Society.

[6] G. Canfora and M. Di Penta. Testing services and
service-centric systems: Challenges and opportunities.
IT Professional, 8(2):10–17, 2006.

[7] G. Canfora and M. Penta. Service-oriented
architectures testing: A survey. In Software
Engineering: International Summer Schools, ISSSE
2006-2008, Salerno, Italy, Revised Tutorial Lectures,
pages 78–105, Berlin, Heidelberg, 2009.
Springer-Verlag.

[8] M. Chu, C. Murphy, and G. Kaiser. Distributed in
vivo testing of software applications. In ICST ’08:
Proceedings of the International Conference on
Software Testing, Verification, and Validation, pages
509–512, Washington, DC, USA, 2008. IEEE
Computer Society.

[9] S. Dustdar and S. Haslinger. Testing of
Service-Oriented Architectures – A practical approach.
In Object-Oriented and Internet-Based Technologies,
pages 97–109. Springer Berlin/ Heidelberg, 2004.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional, 1995.

[11] A. González, É. Piel, and H.-G. Gross. Architecture
support for runtime integration and verification of
component-based systems of systems. In 1st
International Workshop on Automated Engineering of
Autonomous and run-time evolving Systems (ARAMIS
2008), pages 41–48, L’Aquila, Italy, Sept. 2008. IEEE
Computer Society.

[12] A. González, É. Piel, and H.-G. Gross. A model for
the measurement of the runtime testability of
component-based systems. In 5th Workshop on
Advances in Model Based Testing (A-MOST 2009),
pages 19–28, Denver, Colorado, Apr. 2009. IEEE
Computer Society.

[13] M. Greiler, H.-G. Gross, and K. A. Nasr. Runtime
integration and testing for highly dynamic service
oriented ICT solutions – an industry challenges report.
In TAIC-PART ’09: Proceedings of the Testing:
Academic & Industrial Conference on Practice And
Research Techniques, pages 51–55, Windsor, UK,
2009. IEEE.

[14] H. Gross. Component-based Software Testing with
UML. Springer, Heidelberg, 2005.

[15] R. Heckel and L. Mariani. Automatic conformance
testing of web services. In Proc. Fundamental
Approaches to Software Engineering (FASE), pages
34–48. Springer, 2005.

[16] D. Krafzig, K. Banke, and D. Slama. Enterprise SOA
: Service-Oriented Architecture Best Practices (The
Coad Series). Prentice Hall PTR, September 2006.

[17] M. P. Papazoglou, P. Traverso, S. Dustdar, and
F. Leymann. Service-oriented computing: State of the
art and research challenges. Computer, 40(11):38–45,
2007.

[18] D. Suliman, B. Paech, L. Borner, C. Atkinson,
D. Brenner, M. Merdes, and R. Malaka. The
MORABIT approach to runtime component testing.
In COMPSAC ’06: Proceedings of the 30th Annual
International Computer Software and Applications
Conference (COMPSAC’06), pages 171–176,
Washington, DC, USA, 2006. IEEE Computer Society.

[19] Y. L. Traon, D. Deveaux, and J.-M. Jézéquel.
Self-testable components: From pragmatic tests to
design-for-testability methodology. In TOOLS ’99:
Proceedings of the Technology of Object-Oriented
Languages and Systems, page 96, Washington, DC,
USA, 1999. IEEE Computer Society.

[20] J. Vincent, G. King, P. Lay, and J. Kinghorn.
Principles of built-in-test for run-time-testability in
component-based software systems. Software Quality
Control, 10(2):115–133, 2002.

[21] R. K. Yin. Case Study Research, Design and Methods.
Sage Publications, Beverly Hills, CA, second edition,
1994.

42

View publication statsView publication stats

https://www.researchgate.net/publication/234803444

