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Abstract—Plug-in architectures enable developers to build
extensible software products. Such products are assembled
from plug-ins, and their functionality can be enriched by
adding or configuring plug-ins. The plug-ins themselves consist
also of multiple plug-ins, and offer dedicated points through
which their functionality can be influenced. A well-known
example of such an architecture is Eclipse, best known for
its use to create a series of extensible IDEs.

In order to test systems built from plug-ins developers use
extensive automated test suites. Unfortunately, current testing
tools offer little insight in which of the many possible com-
binations of plug-ins and plug-in configurations are actually
tested.

To remedy this problem, we propose three architectural
views that provide an extensibility perspective on plug-in-
based systems and their test suites. The views combine static
and dynamic information on plug-in dependencies, extension
initialization, and extension usage. The views are implemented
in ETSE, the Eclipse Plug-in Test Suite Exploration tool. We
evaluate the proposed views by analyzing eGit and Mylyn, two
open source Eclipse plug-ins.

Keywords-Testing; Eclipse; Plug-in Extension Points; Modu-
larization; Model Extraction

I. INTRODUCTION

Plug-in architectures are widely used for complex systems
such as browsers, development environments, or embedded
systems, since they support modularization, product exten-
sibility, and run time product adaptation and configuration
[1], [2], [3]. A well-known example of such an architecture
is Eclipse1 which has been used for building a variety
of extensible products, including a range of development
environments for different languages [4].

The size and complexity of software products based on
plug-ins can be substantial. To deal with this, software
developers rely on extensive automated test suites. For
example, in their book Contributing to Eclipse, Gamma and
Beck emphasize test-driven development of Eclipse plug-ins
[5]. Likewise, the Eclipse developer web site2 describes the
structure of the unit and user interface tests that come with
Eclipse.

*Work done while at the Computer Human Interaction and Software
Engineering Lab (CHISEL), Department of Computer Science, University
of Victoria, Canada.

1http://www.eclipse.org
2http://wiki.eclipse.org/Eclipse/Testing

A consequence of systematic automated testing is the test
suite understanding problem: Developers working with such
well-tested plug-in-based architectures, face the problem of
understanding a sizable code base along with a substantial
test suite. As an example, the Mylyn3 plug-in for Eclipse
comes with approximately 50,000 lines of test code. Devel-
opers responsible for modifying Mylyn, must also adjust the
Mylyn test suite.

To address the test suite understanding problem, re-
searchers have identified test smells pointing to problematic
test code, test refactorings for improving them, and have
proposed visualizations of test execution [6], [7], [8], [9].
Most of the existing work, however, focuses on the unit
level. While this is an essential first step, for plug-in-based
architectures it is insufficient, since it will not reveal how
plug-ins are loaded, initialized, and executed dynamically.
As an example, just starting Eclipse loads close to one
hundred plug-ins. Since these plug-ins do have interactions,
looking at plug-ins in isolation yields insufficient insight in
the way the dynamic plug-in configuration is exercised in
test suites.

Based on this, we propose to look at test suites from an
extensibility perspective, focusing on the way in which plug-
ins are used dynamically to extend system functionality.
Thus, the central research question of this paper is: How
can we support developers in understanding complex test
suites for plug-in-based architectures from an extensibility
perspective?

To address this question, we propose three architectural
views [10] that can help engineers understand plug-in in-
teractions. The views we propose are tailored towards the
plug-in architecture of the Eclipse ecosystem. Eclipse is
of particular interest, since it not only offers regular plug-
ins as software composition mechanism, but also dynamic
extension-points, through which a plug-in can permit other
plug-ins to extend its functionality.

To offer insight in these extension mechanisms, we pro-
pose three views: the Plug-in Modularization View, the
Extension Initialization View, and the Extension Usage
View, which will be discussed in Section III. To construct
these views, we follow the Symphony software architecture

3http://www.eclipse.org/mylyn



reconstruction approach [10], and deploy a mixture of static
and dynamic analysis.

To evaluate the usefulness of these views, we discuss their
application to two open source Eclipse plug-ins: the fairly
small eGit plug-in permitting the use of the git versioning
system within Eclipse, and the substantial collection of
plug-ins that comprises the Mylyn plug-in for work item
management.

The paper is structured as follows. Section II provides
the necessary background material on plug-in architectures.
Section III describes our approach, and covers the three
architectural views. Section IV discusses our tool suite for
reconstructing these views, after which Section V describes
how the views helped to understand two case studies. We
reflect on the case study findings in Section VI, after which
we conclude with a summary of related work, contributions,
and areas for future research.

II. BACKGROUND

A. Eclipse Modularization

Plug-in based dynamic modularization systems are widely
used to create adaptive and configurable systems [1]. A
well known example is OSGi4, which provides a dynamic
modularization platform for Java.

The Eclipse plug-in architecture5 is based on the Equinox6

implementation of OSGi. Eclipse groups classes and pack-
ages into units, the so called plug-ins. Plug-in applications,
like the well known Eclipse development environment, are
composed from constituent plug-ins coming from different
developers. We call the collection of all plug-ins forming
a common application, including the plug-in architecture
itself, a software ecosystem. A plug-in consists of code and a
specific meta data file, the manifest. The manifest describes,
among others, the dependencies between plug-ins.

Plug-ins represent the basic extensibility feature of
Eclipse, allowing dynamic loading of new functionality.
Plug-in P can invoke functionality from other plug-ins
Pi. At compile time, this requires the availability of the
constituent plug-in’s Java interfaces, giving rise to usage
relation between P and Pi.

A next level of configurability is provided by means of
the extension mechanism, illustrated in Figure 1. Plug-in A
offers an extension-point, which is exploited by B to extend
A’s functionality. As an example, A could define a user-
visible menu, and B would add an entry with an action to
this menu.

An extension may be an executable extension contributing
executable code to be invoked by the extended plug-in, a data
extension, contributing static information such as help files,
or a combination of both [4]. For executable extensions, a

4http://www.osgi.org/
5http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin

architecture.htm
6http://www.eclipse.org/equinox

Plug-in B
<extension name="extensionB"  

point="A.pointID">
|
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Figure 1. The Eclipse plug-in extension mechanism

common idiom is to define a Java interface that the actual
extension should implement, as shown in Figure 1.

A plug-in declares the extensions and extension-point
it provides in an XML file. In addition, each extension-
point can describe the expected syntactical descriptions of
extensions by means of an optional XML schema file.
From the extension declarations we can derive an extension
relation from extensions to extension-points.

B. Eclipse Testing Practices

Gamma and Beck [5] provide best practices for test-
ing Eclipse, and, thus, for plug-in-based architectures, in
general. Their book emphasizes test-first development of
plug-ins. It does not focus on integration testing of plug-
in systems. Guidelines for testing Eclipse7 emphasize unit
testing as well as user interface testing for which capture-
and-playback tools are used.

The literature addressing OSGi testing focuses on the
provisioning of the infrastructure required during the set-
up of integration tests [11]. We have not been able to
find test strategies targeting integration testing of dynamic
modularization systems in general, or plug-in systems in
particular.

A substantial body of research has been conducted in the
area of integration testing [12], [13], [14]. Closest to the
Eclipse extension mechanism are test strategies addressing
polymorphism, such as the all-receiver classes adequacy
criterion [15].

Most integration testing approaches are model-based, and
explain how, e.g., UML state machines can be used to derive
test cases systematically [16], [17]. In the Eclipse setting,
it is not common to have models of plug-ins and their
extension-points available a priori. As we will see, however,
our views can be reverse engineered from static dependency
declarations as well as from run time plug-in interactions.
As such, they can help developers compare actual plug-in
interactions with declared dependencies.

III. MODELS FOR TEST SUITE UNDERSTANDING

When facing the problem of understanding a large test
suite, a first step for an engineer is to look at the documen-

7http://wiki.eclipse.org/Eclipse/Testing
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Figure 2. Static and Dynamic Dependencies of Test-Component “mylyn.commons.tests”

tation, to gather basic static and dynamic information on e.g.
the size in lines of code, and to assess the test coverage and
timing through test execution. These activities are similar to
what newcomers do with regular code in a “first contact”
setting, as described by DeMeyer et al. [18].

While this provides an initial sense of the scope and
set-up of the test suite, it does not yield insight in the
internal structure and organization of the test suite. Cur-
rently, the only way towards deeper insight is the (manual)
inspection of the code. The goal of the first view, the
Plug-in Modularization View, therefore, is to provide such
structural and organizational awareness with respect to the
code-dependencies of plug-ins.

Equipped with this basic structural knowledge, the second
step is the analysis of the extension relations between plug-
ins and the way they are exercised by the test suite. This is
realized through the Extension Initialization View.

Finally, the Extension Usage View completes the picture
by providing the developer with insight in the way the test
suite exercises the actual methods involved in the extensions.

In this section we present these views, state their goal,
and formulate the information needs they address. To re-
construct the views, we follow the Symphony architecture
reconstruction method [10]. Thus, we distinguish source
models corresponding to the raw data we collect, target
models reflecting the view that we eventually need to derive,
as well as mapping rules between them. In what follows
we present a selection of the meta-models for the source
and target models involved, as well as the transformation
between them.

A. The Plug-in Modularization View

The Plug-in Modularization View provides insight in the
static as well as dynamic dependencies between plug-ins and
the test code. The developer can use this view to answer
such questions as “which plug-ins are tested by which
test-component?”, “where are test harness and test utilities
located?”, and “which tests are exercising this plug-in?”.

The static part of the view can be obtained through simple
static analysis of plug-in source code and meta-data, taking
the test suites as starting point. The dynamic dependencies
are obtained by running instrumented versions of the code
reporting all inter-plug-in method calls.

Figure 2 illustrates this view. It shows test-component
commons.tests of Mylyn and its static (on the left) and
dynamic code-dependencies (on the right). On the left we see
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Figure 3. Meta model of the Extension Initialization View

that commons.tests statically depends on four other plug-ins.
The dynamic representation on the right side, reveals that
only two out of those four plug-ins are actually exercised in
a test run. It does not explain why this is the case (reasons
could be that the test suite requires manual involvement, or
that a different launch configuration should be used), but it
steers the investigation towards particular plug-ins.

B. Extension Initialization View

The plug-in modularization view provides a basic under-
standing of the test architecture and the code-dependencies
between all test artifacts and their plug-ins. This is a
prerequisite for the following step of understanding the test
suite from the more fine-grained extensibility perspective.

By means of this perspective, we will not only be able to
tell which extensions and extension-points are tested in the
current test suite, but we also gain insights in the system-
under test and its extensibility relations. The meta model of
this view is illustrated in Figure 3.

The view helps answering questions on extensions and
the way they are tested at system, plug-in, and test-method
level, as discussed below.

System Scope: At system scope, the view gives insights
in the extension relations present in the system-under test,
i.e., which plug-in contributes to the functionality of another
plug-in. This is visualized in one graph, as shown in Fig-
ure 7. The graph presents the overall contributions of the
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Figure 4. Trace meta model

systems, i.e., all extension-points and extensions within the
system-under test. In case plug-in A declares an extension-
point and plug-in B provides an extension for it, the graph
shows a link between the two nodes.

The label of the link represents the number of statically
declared extensions one plug-in provides for the other, and
the number of extensions that are actually used during a test
run.

Plug-in Scope: Zooming in to the plug-in level, the
next view presents the relations of all extension-points de-
clared by a plug-in to existing contributions (i.e., extensions)
declared by the system under test.

This can be visualized e.g., by means of a graph. An
example is given in Figure 6. The graph presents all involved
plug-ins as ellipse-shaped nodes. Extension-points are rep-
resented as rectangles. Relations between an extension-point
and a plug-in providing an extension are presented as edges.
Extensions that are actually used during the test run are filled
with a color.

The view can also be used to show all extensions declared
by the system-under test, and those that have been activated
during a test run.

Test-Method Scope: At method scope, the developer
can observe which test-methods have invoked the code of
an extension-point responsible for loading extensions, and
which extensions have been created for it. In this way, a
developer or tester can identify the location of the test-code
for a particular extension-point.

UNDERLYING META-MODELS: This view is based on
static meta data and dynamic trace information. The meta
data comes from the mandatory XML file, and from the
optional XML-schema file (see Section II).

The trace used for this view comprises “extension initial-
ization events” during the test run, as illustrated by the the
trace meta model in Figure 4. An “extension initialization
event” is recorded before a method named “createExe-
cutable()” is called. In the Eclipse Platform, this method

Listing 1. Extension Initialization Aspect

trace call createExecutableExtension(..) with target(Object o);

before createExecutableExtension(){
write(o.getExtensionPoint(), o.getContributor, time)
}

is used to create the extension from a given class, passed
as parameter. This also is the point we intercept to trace
the caller of this method and the target-object, by means of
an aspect. The pseudo-code of such an aspect is given in
Listing 1.

This trace data shows only the initialization of an exten-
sion. It does not show the usage of this extension, which
would be the invocation of a method of the class of the
extension.

RECONSTRUCTING THE VIEW: The data behind this
view comprises the static meta data files for extension and
extension-point declaration, and the information gained by
tracing the creation of extensions during a test run.

The dynamic trace comprises only executable extensions,
because only those are created by the method we trace. An
alternative to include also data extensions, is to intercept not
the creation of an extension, but the look-up of extensions
from the plug-in registry. We decided against this approach
for two reasons: first, the views would become more com-
plex. Second, data extensions, i.e., extensions that enhance
the system only with static data, are less interesting from a
testing perspective.

Thus, before we can compare the static and dynamic data
sources, we have to know which extensions are data exten-
sions, and which extension-points load only data extensions.
An executable extension has to state at least one class in its
meta data file, used to instantiate the extension. Thus, to
determine the type of an extension we analyze the presence
or absence of classes in the meta data file.

An extension-point, on the other hand, states the class
an extension has to be based on in the XML-schema file.
We analyze these schemes to retrieve the attributes defining
the base class. However, an XML schema is not mandatory.
If it is missing, we try to find an actual extension for
the extension-point. If that extension contains a class, we
conclude that the extension-point is executable, otherwise it
is a data extension-point. If we cannot find an extension we
classify the type of the extension point as unknown.

The remaining data can be filtered and grouped, to show
which extensions have been created, by which extension-
points, and which test-method is involved. The data does
expose information about the usage of an extension. To take
advantage of that, the Extension Usage View is introduced
in the following.
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Figure 5. Meta Model: Extension Usage View

C. Extension Usage View

The Extension Usage View focuses on characterizing the
usage of an extension during the test run. The goal of this
view is to give the developer or the tester an understanding
of how the integration of the extensions has been tested.
The question it addresses is “which extensions have been
actually used during the test run, and when and how have
they been used?”

The meta model of the Extension Usage View is illustrated
in Figure 5. In this view, extensions are referenced by their
name. Extensions are furthermore related to the extension-
points they are target at, and to the test-methods exercising
them. Recall from Figure 1 that extension-points can declare
types (interfaces or classes) that are implemented by actual
extension classes.

The Extension Usage View can be used at system, ex-
tension, and usage level. On system scope, we can gain
detailed information about which of the declared extensions
have been actually used during a test run, and how many of
the test-methods are associated with extension usages. Using
an extension means to invoke a method of the extension
class, overwritten or inherited by the type declared at the
extension-point.

Zooming in to the extension scope, the developer can see
which test-methods have used a given extension. This infor-
mation is helpful to spot the right piece of code responsible
for the extension usage, e.g., to enhance or change it.

A refinement of this view to the usage scope shows how
the extension has been used during the test run. All methods
of an extension that have been called during testing are
listed. The view also visualizes which of those methods
have been redefined by the particular extension. With this
view, the tester gains knowledge about which integrations
of extensions have been tested, and can locate test code
responsible for the usage of an extension.

UNDERLYING META-MODELS: The execution trace
used to construct the Extension Usage View comprises
detailed method calls of a test run, as illustrated by the meta

Listing 2. Extension Usage Example
class Extension{

void me1() {}
}

class B extends Extension {
void mb1() {}
void me1() {}
}

class C extends Extension {
void mc1() {}
}

class ExtensionUsage{
void invokeExtension(Extension [] extensions){

for(Extension e : extensions)
e.me1();

}}

model in Figure 4.
We trace all public calls directed to the system-under test.

For each extension, we calculate all types that the extension
is based on and that are declared by the extension-point, as
explained in the next subsection. Subsequently we trace all
method calls to these types.

In order to see actual usage of extensions, dynamic
information is required. As an example, consider Listing 2
illustrating an simplified example of an invocation of an
extension. Class Extension defines the base class of the
extension. Class B and C are extensions, extending the
base class. The ExtensionUsage represents the code in the
extension-point using an extension. In the trace an invocation
of an extension is visible as a call to “Extension.me1()”. This
implies, that the runtime-class for every extension invocation
has to be known, in order to distinguish the extensions from
each other, e.g., B from C in the example.

RECONSTRUCTING THE VIEW: To construct this view,
we need in addition to the dynamic data discussed before, the
method set of an extension that can be used by an extension-
point to invoke it. We will refer to this set as to the extension
method set. As Eclipse does not force an extension-point to
declare formally the type an extension has to extend, we
might have to derive our extension method set based on a
heuristic.

First, in case the extension-point declares a base class for
an extension, the algorithm uses this to derive recursively all
methods defined by it and its super-types, i.e., interfaces and
ancestors. This collection represents the extension method
set.

In the case, no base class is provided, the algorithm
collects all the classes an extension declares in its meta data
file. Starting from these classes, the algorithm recursively
derives all super-types of these classes. Note, however, that
not all of them might be visible to the extension-point.
For example, consider a class A, defined in plug-in Pa,



that extends class E, defined in plug-in Pe and implements
Interface I also defined in Pa. Since no declaration of a base
class is provided, the algorithm has to decide whether A is
based on I or E. The algorithm classifies types as visible for
the extension-point if they are declared outside of the plug-
in providing the extension. Contrary, a type is considered as
invisible when declared within the plug-in of the extension.
Those are excluded from the type set. Applying this to our
example reveals that the base class has to be E.

If the extension and the extension-point are declared in the
same plug-in all types are considered relevant. This results
in an optimistic heuristic, i.e., it cannot miss a relevant type,
but might include too many. From the resulting set of types
the extension method set can be derived.

Finally, the trace is inspected for calls made to methods
included in the method set. Only when the traced runtime-
class corresponds to the class of an extension, the call is
considered as an actual usage in a particular test-method.

Based on this analysis, the view shows for every extension
which test methods have caused their usage, and which
methods out of the extension method set have been used.

IV. IMPLEMENTATION

We implemented the reconstruction and presentation of
our views in ETSE8, our “Eclipse Test Suite Exploration
Tool”. It is implemented in Java, and offers an API to
construct the views in question.

To analyze the static Java code we use the Byte Code
Engineering Library9, which inspects and manipulates the
binary Java class files. Meta data, including the OSGi
manifest and the plugin.xml files, is collected and analyzed.
To trace the execution of the test run, we use aspect-oriented
programming, in particular the AspectJ10 framework. We
defined several aspects, addressing different join points to
weave in our tracing advices. There are three main classes
of aspects that can be differentiated: the aspect used for
weaving into the initialization of the extensions, the aspect
used to trace method calls, and the aspect used to trace plug-
in starts and stops.

V. EVALUATION OF THE VIEWS

The evaluation is based on a case study including two
subject systems whose test suites have been investigated
by means of the proposed views. We defined the following
research questions to evaluate whether the views meet the
information needs of a developer (RQ1&2), and to estimate
how scalable (RQ3) and accurate (RQ4) the views are:

8We are in the process of creating an ETSE distribution at http://swerl.
tudelft.nl/bin/view/Main/ETSE

9http://jakarta.apache.org/bcel
10http://www.eclipse.org/aspectj

RQ1: To which extent does the Extension Initialization
View help to understand the influencing relations between
the plug-ins under test, and how much does it help to
understand which of those relations have been addressed in
the test suite?

RQ2: To which extent does the Extension Usage View
help to understand how the integration of extensions has
been addressed by the test suite?

RQ3: How understandable and manageable are the
views for large-scale systems?

RQ4: How accurate are the views presenting the
system-under test?

All research questions are addressed with respect to the
different abstraction levels provided by the proposed views.

A. The Subject Systems

One experimental subject is eGit11, a smaller plug-in
system designed to integrate the source control management
system Git into Eclipse. eGit is a good fit for our evaluation,
mainly of its small size, that permits, in addition to the
investigation by means of the views, to manually inspect
the complete system. eGit consists of three main plug-ins,
and two test suites. One test suite comprises the core tests,
and the other the user-interface tests based on the SWTBot
framework. The underlying source code has 28,300 lines of
code, and the test suites comprise 1,700 lines of code.

The other study subject is Mylyn, a task management
system for Eclipse. Mylyn has been chosen because it
represents a large-scale plug-in system, and gives valuable
insights to the ability of the views to help comprehending
such a complex system, as well as to the scalability of the
views. We used Mylyn 3.4 for Eclipse 3.5. It includes the
selection of 27 plug-ins that make up the core contribution.
Those 27 plug-ins come with 11 test-components. Additional
contributions, like connectors, are excluded from this study.
The source code comprises 200,000 lines of code, and
the test suite has 30,000 lines of code. We investigate the
included AllComponents test suite which runs 518 test cases.

B. Information Needs

This section presents the evaluation results for investigat-
ing research questions one and two. We do so by going
through the use of the views for Mylyn, followed by a
reflection on the strengths and weaknesses of the views.

The Views in Practice: The 27 plug-ins in Mylyn
offer 25 extension-points to contribute functionality, and also
declare 148 extensions to enhance its functionality and that
of Eclipse.

The first question during this evaluation is whether the
Extension Initialization View helps to understand how the
148 extensions are related to the 25 extension-points within
the system-under test, and also which of those relations have
been covered by the test suite.

11http://www.eclipse.org/egit
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Figure 8. Extension-Initialization View

This view at system scope for Mylyn is illustrated in
Figure 7. An edge between two plug-ins means that one
plug-in declares an extension-point for which the other
plug-in provides an extension. The view abstracts from the
specific extension-points declared. However, the fraction on
the edge states how many of the static declarations (bottom
of fraction) are activated during a test run (top).

At plug-in scope, this view is illustrated by Figure 6
for plug-in mylyn.context.core. The plug-in provides three
extension-points, namely bridges, internalBridges and rela-
tionProviders. The view shows that within Mylyn six plug-
ins exist that use extension-point bridges to influence the
plug-in, represented by the six nodes connected to this
extension-point. The coloring of five nodes indicates that
only five of the relations are activated during the test run.
The view does not give explanations, but points to one plug-
in the developer might manually inspect and find an empty
XML declaration for this extension.

To understand which test-method causes this extension-
point to load its extensions, the developer zooms at method
scope, as illustrated by Figure 8. Subsequently, the Extension
Usage View provides deeper insight in the actual usage of
those extensions and reveals that none loaded by bridges is
actually used during a test run.

Findings: The Extension Initialization View allows to
understand the relations of the plug-ins under test, based
on their contributions to each other. Especially for a large-

Figure 9. Extension Usage Profile

scale system like Mylyn, the system scope view has proven
useful to visualize and represent how plug-ins influence
the behavior of each other, and to indicate which of those
extension relations have been addressed by the test suite.
On the other hand, the view does not show how the system-
under test influences or is influenced by its ecosystem, i.e.,
Eclipse. Nevertheless, the borders defining the system-under
test can be chosen by the viewer. On plug-in level, the view
helps to understand which extension-points load extensions.
On the other hand, the view does not indicate reasons why
some relations are activated and others are not, as in Figure
6.

The Extension Usage View helps to understand how the
test suite addresses integration with respect to extensions.
On a detailed level, this view allows to locate the test code
related to an extension, as Figure 9 shows for an extension of
exportWizards. Further, the view sheds light on the structural
testing approach followed by this test suite, e.g., how many
of the methods of an extension have been used.

However, both of the views do not evaluate the test
suite against coverage and test adequacy criteria. Despite
that, they give the developer a valuable perception to judge
the quality of the test suite. With respect to Mylyn and
eGit, the views revealed that not all of the extension-points
and extensions are tested. By means of the detailed views,
we were able to locate source code and get insights in



the testing approaches for extension and extension-points.
For example the bridges extension-point, addressed in the
examples before, is tested through explicit adding of an
extension-object by the test-method.

C. Scalability

This section presents the scalability of the views first,
with respect to their understandability by human viewers and
then, in terms of the manageability of disk space required
for the trace files.

In general, the views provide several abstraction levels
(e.g, system, plug-in and method scope) to better cope with
scalability issues. We discuss scalability for both views at
several of these abstraction levels.

Extension Initialization View: At system scope, the
number of entities displayed turns the balance. The viewer
has to be able to comprehend the relations the entities have
with each other to understand the overall system. Within
Mylyn, the system view is, with 15 related plug-ins, still
understandable. On the other hand, the system scope view is
not scalable enough to represent a plug-in system as complex
as the Eclipse IDE in a usable way.

The evaluation for eGit showed eGit is too simple for
the initialization view at system scope. eGit only has a few
plug-ins with a few extension relations: the view is more
helpful for more complex systems.

The understandability of the view at plug-in scope de-
pends on the number of extension-points defined per plug-
in, and not on the overall size of the system-under test. This
means that within a small system like eGit, the view can
be as helpful as in a large-scale system. In both subject
systems, the views are understandable with an average of 2
and a maximum of 10 extension-points defined per plug-in
(based only on plug-ins providing extension-points).

Extension Usage View: The extension usage view
presents at all abstraction levels information that can be
consumed per item. This means the entities do not have to
be put in relation with each other by the viewer. Therefore,
we consider this view as scalable, independent of the size
of the system-under test or the number of extensions. At all
scopes, the viewer will be either interested in a summary of
the data, like 15 out of 58 created extension have been used,
or the developer is concerned with a particular extension, or
method.

Another question is the manageability of the data with
respect to its required disk space. The size of the trace
file used to create the Extension Initialization View is
reasonable, e.g., 32Mb for Mylyn and 52Kb for eGit. On
the other hand, the trace file required for the identification
of the Extension Usage includes trace data from several
packages outside of the system-under test and can become
large. The trace of Mylyn, for all of the 148 extensions has
6Gb. However, the number of packages included for tracing
are affected by the number of extensions analyzed. The size

of the file depends on this variable. We argue that an usual
usage scenario for this view involves the inspection of a
small number of extensions, e.g., 1-5. Then the according
trace would be much smaller. Once this trace is analyzed the
remaining information can be stored within the megabyte
range, (e.g., 6Mb for Mylyn).

D. Accuracy and Correctness

The Extension Initialization View tells the developer which
test method causes an extension-point to load an extension.
For Mylyn, the view shows nine test-methods related to an
extension-point defined in Mylyn.

We manually inspected all of those nine test-methods, to
see if it is apparent from the test-method how it is involved
in testing the extension-point. For all, it was immediately
clear that the code tests the extension-point, i.e., no false-
positives occurred.

The accuracy of the Extension Usage View is mainly
influenced by the classification of the classes to be either
visible or invisible for the extension-point. A classification
error might occur, if the extension-point does not provide
a base-class in its XML schema file. When in doubt, the
algorithm behaves optimistic and classifies all types, that
are extended by the class of the extension as related. This
means no extension usages are missed, but it leads to a
wrong classification if the extension class does not only
extend the Type declared by the extension-point. Then, the
view indicates more extension usages than happen, and the
viewer has to reduce them manually.

This false classification is reduced, by considering that if
the extension-point is not declared in the plug-in that pro-
vides the extension, and a type extended by the extension is
defined within this plug-in, this Type cannot be visible to the
extension-point, and can be excluded. Until the extension-
point is required to indicate a Type, we cannot elude
misclassification. In Mylyn, all extension-points provide an
XML schema-file. To get an impression for the likelihood of
a misclassification we manually inspected all 29 extension
classes declared for an extension-point within Mylyn, i.e.
representing the system-under test. None of those would
have led to a misclassification. In addition, we inspected
9 extension classes declared for extension-points declared
outside the subject system (but in the ecosystem) to see their
potential classification error. Of these, only one class would
have caused a misclassification.

VI. DISCUSSION

LIMITATIONS: At the moment, we are only partly
addressing the integration of the system-under test in its
ecosystem. The views mainly focus on the relations within
the system-under test. Contributions to the ecosystem, i.e.,
extensions from the system-under test for extension-points
defined outside are addressed. But, the Extension Usage
View does not yet address directly extension-points defined



by the system-under test and their extensions outside of the
system-under test. That would be an extension e.g., defined
by Eclipse for an extension-point inside the system-under
test. Even though, the tester would have to think about if
this part of Eclipse should not be included in the system-
under test.

RECOMMENDATIONS: Standardization. As discussed,
extensions can be of two types, data or executable exten-
sions. In Eclipse there is no formal way to distinguish
them. Further, an extension-point is not forced to provide
an XML schema-file describing the syntactical contract be-
tween creator and contributor. We would recommend stricter
declarations for extension-points. Also a standardization for
core elements required within the meta data XML file would
facilitate the comprehensibility of plug-in systems.

Set-Up and Tear-Down. While executing a test suite with
the Eclipse plug-in test runner, the framework is only started
once. Also plug-ins and extensions are created on demand
and not automatically stopped after a test execution of one
method. This means that the execution of a test-method can
change the state of the system, and therefore possibly change
the outcome of following tests. For example, a test-method
that creates an extension, might also need to activate the
plug-in providing this extension. In the case, the extension
would be used also by a subsequent test-method, this test-
method would not have to activate the plug-in anymore.
We believe that there is not enough awareness for the
implications of this circumstance. The test runner should
allow to configure the set-up and tear-down behavior for the
execution environment, in this case Eclipse.

THREATS TO VALIDITY: With respect to external va-
lidity, the case studies chosen, Mylyn and eGit, can be
considered representative for Eclipse plug-ins. In particular
Mylyn is a complex plug-in, and hence we expect the views
to be useful to other complex plug-ins as well.

While the extension mechanism is Eclipse-specific, it is
essentially a callback mechanism, which is a common way
to achieve extensibility in many systems. We conjecture that
the proposed views are useful in such a callback setting as
well, in particular if they are, like Eclipse, based on OSGi.

Concerning reliability (repeatability), the subject systems
are open source and accessible by other researchers.

VII. RELATED WORK

A recent survey on the use of dynamic analysis for
program understanding purposes is provided by Cornelissen
et al. [19]. One of the findings of this survey is that very few
studies exist addressing dynamically reconfigurable systems
– a gap that we try to bridge with our paper.

In the area of test suite analysis and understanding, van
Deursen et al. [8] proposed a series of JUnit test smells
(pointing to hard to understand test cases) as well as a
number of refactorings to remedy them. Later, this work
was substantially elaborated by Meszaros into an extensive

book on xUnit patterns [7]. Van Rompaey et al. propose a
formalization of a series of test smells, as well as metrics
to support their detection [9]. They also propose heuristics
to connect a test class to its corresponding class-under-test
– which we also use in our approach. Gälli et al. present a
taxonomy of (Smalltalk) unit tests, in which they distinguish
tests based on, for example, the number of test methods per
method-under test, and whether or not exceptions are taken
into account [20].

In order to support the understanding of test suites,
Cornelissen et al. investigate the automated extraction of
sequence diagrams from test executions [6]. Zaidman et al.
investigate implicit connections between production code
and test code, by analyzing their co-evolution in version
repositories [21]. While these studies provide important
starting points, none of them approaches test suite under-
standing from an integration or extensibility point of view.

VIII. CONCLUDING REMARKS

In this paper, we have addressed the problem of un-
derstanding test suites for plug-in-based architectures. In
particular, the following are our key contributions:

1) Two architectural views that can be used to understand
test suites for plug-in-based systems from an extensi-
bility perspective;

2) the Eclipse Plug-in Test Suite Exploration (ETSE)
tool, that can be used to recover the proposed views
from existing systems by means of static and dynamic
analysis; and

3) an empirical study of the use of these views in Mylyn
and eGit.

In our future work, we will first of all apply the proposed
approach to further plug-in-based architectures. Further-
more, we will investigate to what extent the views can be
used as a base to derive adequacy criteria used to prevent
failures reported in the actual usage of concrete plug-in-
based systems such as Eclipse. Finally, we plan to enhance
this base with models representing the shared properties of
plug-in based systems. Together, from the models a new test
strategy and approach for plug-in based systems that provide
dynamic reconfigurations should emerge.
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