Secure Resource Sharing in Ad hoc Networks

Michaela Greiler, Peter Schartner
System Security, University Klagenfurt, Klagenfurt, Austria

Abstract Mobile and wireless devices become more pop-
ular and their capabilities increase as well. At the same
time, most of the today’s PC power is unused, as a study
of the Gartner Group indicates. Grid computing and P2P
systems take advantage of this fact and provide unused re-
sources to other nodes within the network, but mobile sce-
narios or ad hoc networks are often left out. This paper
presents a concept for secure resource sharing in mobile ad
hoc networks, with a special focus on challenges and prob-
lems with mostly unknown and potentially unreliable and
untrustworthy devices. Virtualization technologies will be
presented as a solution to grant application security, as
they are also used in grid and trusted computing. The se-
cure resource sharing (SRS) system, that will be presented
in this paper as well, focuses on granting security aspects
like availability, privacy, confidentiality and trust estab-
lishment in the area of resource sharing.

Keywords: secure resource sharing, security aspects, virtual-
ization, sandboxing, authentication, trust.

1 Introduction

Today everyone talks about local services. Separate ap-
plications provide different services like information about
restaurants, traffic congestion, and tourist information.
Normally all these services are obtained and managed from
a central server and provide and distribute information
and data. Nowadays mobility is one of the most pressing
topics, and small, mobile devices become more popular
every day. Problems with these small devices like cellu-
lar phones, personal digital assistants (PDAs) and small
laptops are limited central processing unit (CPU) power,
small disk space, little available random access memory
(RAM) and limited communication bandwidth. Further-
more many applications are not executable because of
hardware restrictions or incompatible operating systems.
Gartner Group research results in the perception that over
95% of today’s PC power is unused [5]. Many different
communication technologies are available, but coopera-
tion abilities between them are constrained. For exam-
ple, every type of network connection (e.g. Infrared —
IrDA, Bluetooth, LAN, WLAN) within a Windows op-
erating system has to be configured and updated sepa-
rately. If someone wants to find communication partners
in range, every connection type requires a request or an

update. Moreover, communication is only possible if the
hardware of both communication partners is supporting
the desired network connection. The main idea of the se-
cure resource sharing (SRS) system is, to go one step up
and abstract from different communication technologies to
provide a technology independent communication and ser-
vice infrastructure. Services should provide resources to
small and restricted devices. These services not only in-
clude information and data services, but also provide CPU
power, applications, and disk space.

At this, the main focus is set on the security aspects of re-
source sharing, and the restrictions that come along with
ad hoc networks. Figure 1 shows a potential network in
which resources can be shared. In this network, devices
of different power and abilities exist. For example the
smartphone can only communicate with the other devices
via infrared. Only the PDA is able to communicate via
infrared and WLAN, and is used as a bridge to other de-
vices like the laptop, which further allows to access the
printer or the Internet via the PC. Furthermore, the lap-
top can request resources from other devices. For example,
the laptop may outsource some costly calculations to the
more powerful PC.

Every user who wants to participate, has to download the
middleware from a central third party (generally a server).
The middleware is responsible for network management,
which includes opening and closing the network connec-
tion as well as mediating between different types of com-
munication technologies. Other tasks like creating and
maintaining service lists are covered by the middleware
too.

Impartial from the underlying communication technology,
a high level protocol (at application level) will be used for
service communication. Security tasks like authentication,
assurance of integrity etc. are covered by the middleware
as well as by the services themselves. A service is inde-
pendent from the middleware and can be seen as a plug-
in. The middleware provides a framework for network
management, communication and security. The services
or plug-ins extend this framework and can be added ad
libitum. This architecture provides a common basis for
various services from different software producers. The
middleware offers a well defined and open API. A similar
approach to split middleware and services is used by the

Figure 1: Potential resource sharing network

SMEPP project, that focuses on providing a middleware
for P2P systems [8]. The concept of a shared middle-
ware and the ability to integrate various different services
should lead to a consistent service environment. By now,
services are grouped in four categories:

Information Sharing: Information services, often imple-
mented as mobile agents, offer the ability to drop search
queries that return some information collected by other
devices in range or from the Internet. Examples are get-
ting weather forecasts, finding petrol stations, restaurants,
books etc. Information services can not only be used to
obtain information or data, but also to distribute it and
transfer it from one point to another implicitly, like it is
useful for emergency services. In addition, information
services are thought to allow peers to work in a collabora-
tive manner. Therefore white boards, instant messaging,
and co-browsing can be realized.

Storage Sharing: Services belonging to this category pro-
vide free disk space from devices within range. For ex-
ample someone wants to outsource data because the local
disk space is limited. Another device in range has enough
capacity to store the data without any constrictions or
obstructions. The service would mediate between these
two devices and allow the restricted one to save as many
data on the other device as possible and approved. Data
integrity and confidentiality can be assured by the use of
encryption and data integrity mechanisms. But at one go
encryption offers another problem: namely that the part
that saves the data does not know which data it is going
to save. This is known as data legitimacy problem.

Computational Sharing: Using the computational power
of another device is critical and must be well-conceived.
The idea of computational sharing is to use a conglom-
erate of many idling devices in range, to which computa-
tional tasks are outsourced. These devices compute the
tasks and return the results to the applicant. In addition
to transferring the data used for corporate computation,
the algorithm itself can be transferred too. To warrant
the safeness of the calculating device, virtual machines or
processes can be used (sandbox techniques). In that case,
the whole computation will take place in a shielded envi-
ronment.

Application Sharing: This category includes all services of-
fering applications from other devices to be used by appli-

cants. Similar to computational sharing, virtual machines
can provide safety for the service provider. An example
for such a service is an export application. An export ser-
vice could allow an applicant to send data, for example
a Word document, to the service provider which converts
this into a PDF document and sends it back. Besides the
high risks, which are caused by invocations of programs,
legal and license regulations come into play.

The paper is structured as the following: First the usage of
the SRS system at a conference is exemplified. Then vir-
tual machines (VMs) and sandboxes are explained, which
are thought to provide application security. Afterwards
the use of VMs is motivated for application and computa-
tional sharing. Finally pending questions and future work
are presented.

2 Conference Scenario

An appropriate scenario for the usage of the SRS system
is a scientific conference. Many people with similar inter-
ests meet for the same goal - participation and knowledge
transfer. To come into contact and get to know each other,
a special information service can be used. Let us call it
business card service. As its name implies, this service
provides business cards. Everybody having installed this
service, distributes business cards to other conference par-
ticipants and in return can receive business cards from the
others too, as illustrated in Figure 2 (left).

Furthermore the service can also provide information
about contacts of a person, like it is often used in so-
cial networking sites (e.g. LinkedIn). Other information
sharing services allow participants to work in collabora-
tion, like messaging services, services that provide a shared
white-board or enable co-browsing.

In such an environment, business and computer collabo-
ration can be extremely relevant. Authorization can be
guaranteed through network access authorization, which
in particular means that every conferee has got a username
and a password to gain access to the network. Simultane-
ously, the possession of this access credentials can be used
as authorization for service usage.

Using the capabilities and resources of many devices at a
conference can provide great potential and the output of
this computation assembly can be enhanced. Another po-
tential scenario for the use of the SRS system is sharing a
data projector, as Figure 2 (right) shows. Normally only

Exchanging business cards

Direct
connection

Figure 2: Exchange of business cards and Projecting data on a shared screen

one device, for example near to the speaker’s desk, is con-
nected to a data projector. All conferees or speakers that
want to provide some data have to carry their own device
to the lectern and connect it to the data projector. A fur-
ther possible solution would be to save the content on a
portable hard disk (e.g. USB) and copy it to the connected
device. The SRS system can help to simplify this scenario.
The content will be delivered (e.g. via streaming) to the
connected device. No carrying around of devices is nec-
essary. The only requirement is that both the delivering
device and the receiving one share the same application
sharing service. Further examples for resource sharing are
knowledge sharing services, that allow conferees to access
information about research interests of other participants
or share research papers, and services that allow access to
printers, data projectors and other accessible devices.
Storage sharing at a conference enhances the disk space
of devices by using unused disk space of nodes in range.
Often conference members do not want to take more than
a smartphone or a PDA to a conference. Let us consider a
use case where the conference participants have left their
laptops at the hotel. Unfortunately, when they arrive at
the conference they notice that interesting research papers
and prototypes are provided for downloading today. A
storage sharing service can be deployed to allow conference
members to store their data on different devices.

The processing of statistical tests is a predestined example
for outsourcing of data processing and the researchers use
the ability of the SRS system. During the conference, a
group of researchers presents its collision-free key genera-
tion (CFNG) algorithm. The output of the key generator
is claimed to be unique and random. To test the random-
ness of the generated key material, the researchers want
the output to be tested by many statistical tests. The
more tests the output of the key generator passes, the
more it can be deemed to be random. A particular sce-
nario is illustrated in Figure 3. There researcher A sends
one algorithm for a special statistical test (e.g. one of the
Diehard Statistical Test Suite) referred as suitel to CPU
providers P; and P». Another test suite, named suite2
that is known as resource-intensive and time-consuming
is sent to P3. Then A distributes to every provider an-
other part of the CFNG output. The providers start the
statistical test and after finishing they return their results
to researcher A. The results of the test suite2 are not ex-

pected until next day. Therefore the researcher and also
the provider will disconnect from the network with high
probability resulting in an availability problem. The basic
idea to solve this situation is that providers having already
finished the computation will store the results for a par-
ticular period of time (e.g. one day) until researcher A is
available again. If A is in range again, they will send the
results immediately. By the next day, the researchers can
use all the received results to present the randomness of
their CEFNG to the conferees. Beyond using the SRS sys-
tem at a conference, other environments and situations,
in which the SRS system can be useful, are bus stations,
airports, office buildings etc.

3 Virtual Machines & Sandboxes

Besides all efforts to secure communication between nodes
and to introduce authentication mechanisms for ad hoc en-
vironments, it is crucial to concentrate on application se-
curity. To allow applications and code from other, mostly
unknown, nodes to be executed, involves the risk that the
code that has been downloaded and installed is malicious.
To download code only from sources that are fully trusted
is not practical in many systems, and claims for full trusted
sources trespass the ad hoc systems’ character. Further-
more it is not possible to check if the code is malicious or
not prior execution. Securing the application execution is
important, because willingness of the users to share their
resources will reduce drastically if the participation is as-
sociated with a serious risk [5], [2]. As usual, programs
that will be invoked at the supplier’s device are executed
with all the privileges of the supplier. This means that
the program may have write and read access to the user’s
disk, may be able to open network connections and cre-
ate other processes. These privileges have to be restricted
for programs invoked during resource sharing. It has to
be guaranteed that the state of the real machine of the
supplier will not be changed, the privacy of the supplier
is protected and that no unwanted programs or processes
will be executed. Limitations of privileges and access to re-
sources can help to prevent malicious code from harming
the user’s system. The downloaded code has to be exe-
cuted in such a way that it can be completely controlled.
Therefore access to computer resources will be restricted
according to the trust level of the code. Restricted re-
sources can be local disks (read and/or write permissions),

Figure 3: Distributed computation for testing randomness

network connections, process creations, and access control
for dynamic libraries or native methods. Virtualization
technologies enable to run untrustworthy and unsafe ap-
plications in a virtual environment that protect the real
environment from permanent damage [6]. Therefore one
or multiple execution environments are created on a sin-
gle physical machine, as Figure 4 illustrates. Each virtual
machine is a reproduction of the real physical machine.
These virtual machines are distinct, isolated and do not
interfere with each other or the underlying physical ma-
chine. The virtual environment can be analogue to the
current host environment, by copying the environment of
the physical machine to the virtual machine.

Different approaches exist to enforce application security
by restricting access and privileges. Security Enhanced
Linux (SELinux) technology uses Access Control Lists to
limit system access. The User Mode Linux (UMLinux)
and Virtual Server (VServer) technologies create differ-
ent virtual servers for execution of unknown applications.
UMLinux can be seen as a linux-inside-linux solution. The
virtual machines protect the real machine from being dam-
aged, because changes on the virtual machines do not in-
fluence the real system. A drawback of this approach is
the decreased performance because of running multiple op-
erating systems within one device. With the sandbox se-
curity model, a much better performance can be achieved
than by creating complete virtual machines. The sandbox
security model tries to provide a restricted environment in
which untrustworthy code can be run by separating pro-
cesses and limiting access to the system resources (e.g file
system). The Java architecture is well-known for the use
of a sandbox model. In Java the sandbox security model
uses a security manager to determine the access rights.
Code, remote or local, can be subject to security policies.
Other examples for sandbox approaches are the chroot
command, and jailing in Free-BSD (Berkeley Software Dis-
tribution). The chroot command restricts the file system
operation for a process. Jail is a combination of the chroot
command and the sandbox approach. Many approaches,
such as UMLinux and Jail, are restricted to particular op-
erating systems. But in many cases such limitations are
not preferred. A heterogenic environment, such as in the
SRS system, requires a technique that is independent from
the underlying operating system and hardware. Further-

more combinations of the methods listed above have to be
considered. The Java 2 Platform, Micro Edition (J2ME)
gives a direction to secure applications but in addition fo-
cuses on small and powerless devices like smartphones [7].
Key security features of J2ME, assuring application secu-
rity, are bytecode verification, code signing and sandbox
mechanisms. Bytecode verification is an important fea-
ture that restricts an application, in such a way, that it
can only access memory and resources within its domain.
It prevents an application from overloading the Java lan-
guage core libraries. Code signing is the next major pylon
of the security architecture. Digital signatures are used to
check the origin and the integrity of the data. Only appli-
cations that pass the signature verification process can be
downloaded and executed. Furthermore, access permis-
sions of the application depend on the trustworthiness of
the application’s source. Hence read and write operations
on the local storage or establishing a network connection
can be forbidden. For network and data security, J2ME
allows to use point-to-point secure connections. Protocols
such as the Secure Socket Layer (SSL) and the Transport
Layer Security (TLS) protocols are supported and the Se-
cure Hypertext Transfer Protocol (HTTPS) is available in
the Generic Connection Framework. Data security can be
achieved through the Record Management System (RMS),
which allows encoding data.

Virtualization is often reviled as heavy-weighted and
clumsy, and sometimes for good reason. One of the prob-
lems is that frequently VMs are complete operating en-
vironments, although only a subsystem is needed. The
initialization of virtual machines is an expensive task and
leads to costly disk usage and invocation latency.
Software virtualization technology is located between the
operating system and the applications. Applications ex-
ecuted in the virtual machine can access all resources of
the physical machine but are restricted in such a way, that
they cannot tamper the real machine. The virtual machine
shares the execution environment with the real machine.
Deviations from the host environment are stored in the
VM’s local state. These deviations, or a subpart of them,
can be synchronized with the host machine if desired.
Often the concept of namespaces is used for virtualization
and separation. Each VM acts in a distinct namespace and
all resources are renamed to the new namespace of the VM

Virtual Machine 1

Virtual Machine 2

Virtual Machine 3

’ Application 1 ‘

‘ Application 2 ‘ ‘ Application 3 ‘

| 0S 1 \ | 0s2

\ \ 0s3 \

‘ Virtual machine platform

Real Machine
Motherboard, Processor, Memory, Disk, ..., Display

Figure 4: Two VMs running on one single device

they belong to. Namespace virtualization is used in many
well-known systems like FreeBSD Jail, Solaris Containers
and Linux VServers. Yu et al use namespaces for creating
virtual machines for windows applications too, and they
call their virtual machine feather-weight virtual machine
(FVM).

Other windows-based virtualizations are Progress Deploy-
ment System (PDS) and Softgrid. Softgrid erstwhile
Softricity provides application virtualization and dynamic
streaming technologies [4], [6]. PDS creates separated
VMs with a subset of the Windows APIs. Other exist-
ing virtualization technologies are VMware and virtual
PC. In contrast to Softgrid they virtualize at the hard-
ware abstraction layer. Bochs is an emulator project
that runs on most popular platforms and can be found
at http://bochs.sourceforge.net/. The complete x86 PC
emulator allows running operating systems and software
within the emulator and therefore enables the user to
have a machine inside a machine. Virtualization tech-
nologies can be differentiated by their level of abstrac-
tion. Hardware abstraction layer virtualization, like used
by VMware, Virtual PC, Denali, Xen, and User Mode
Linux abstract the hardware of the physical device, like
memory, processor and peripheral I/O devices in such a
way that multiple instances of operating systems can be
installed on a single machine. A major advantage of hard-
ware layer virtualization is the complete separation and
isolation of the different virtual machines and the host
machine. Disadvantageous is the overload and bad per-
formance of the technique because of the high resource
needs.

At the same time, virtualization can be done at the
operating system level. FreeBSD Jail, for example,
uses multiple virtual execution environments to sep-
arate resources that can be accessed by an applica-
tion. These virtual environments are called jails. The
linux-based VServer separates the user-space environ-
ment into distinct virtual private servers. Other vir-
tualization environments for the Linux platform are
Sphera and SWsoft’s Virtuozzo that can be found at
http://www.swsoft.com/en/products/virtuozzo/. In ad-
dition to Linux, Virtuozzo supports the Microsoft Win-
dows server operating system for virtualization. Solaris
Containers offers virtualization technologies for the Solaris
operating system.

Calder et al present in [1] a virtual machine for desktop

grids, named Entropia. Entropia is designed to safeguard
desktop PCs that offer their resources for grid computing
from damage caused by malicious or malformed applica-
tions. Additionally, this environment monitors the be-
haviour of the applications and the usage of the resources
to guarantee that the PC user will not be interrupted or
disturbed. Access control mechanisms restrict the grid
application from modifying data on the device or gaining
access to private data of the user. Entropia pledges that
the system of the user will be in exactly the same state
after the completion of a task as it was before, and that
the user will not experience a performance decrease during
working.

Calder et al define requirements for a virtual machine used
for securing the participation in grid computing, which
are:

Integrity of the device: The data of the device should nei-
ther be accessible nor writeable for the grid computing
application. The integrity and confidentiality of the data
has to be guaranteed.

No change of the state: The state of the real machine
has to be exactly the same after the execution of the grid
application as it has been before.

No performance decrease: The user should always be able
to use his or her device unhindered. If different processes
draw on the same resource, the grid application processes
have to be non aggressive and run with lower priority.

Integrity of the grid computation: Not only the user can
claim protection of his or her device and the data, but also
the integrity and confidentiality of the grid application and
its results have to be considered.

Entropia uses a desktop controller that monitors and con-
trols the entire grid jobs running on the supplier’s ma-
chine. This controller guarantees no performance de-
creases for the user. It looks for the disk, the CPU, the
input and output and the memory usage and restricts the
amount of processes that can be started by the grid ap-
plication. If the grid application uses the resources too
heavily the desktop controller will throttle, pause or even
terminate the application. Moreover, Entropia wraps all
the grid applications by using binary modification technol-
ogy. It wraps native binaries which leads to the advantages
that the application can be written in any language that
compiles to x86 and no source code is required. A detail
description of the wrapping process can be found in [1].

Furthermore Entropia offers sandbox mechanisms that
mediate the complete grid application interaction with the
operating systems and guarantees integrity and confiden-
tiality for the user’s data, the grid application and the
according data.

As it can be seen, much research has been done and will
be done in future on virtualization technologies. The over-
head of running virtual machines can be reduced more
and more. As Yu et al show, their FVM has less than
20% overhead while execution of command line programs.
The potential of virtualization, especially for deployment
of mobile or untrustworthy code and applications, is enor-
mous. Also in the SRS system sandboxing and virtual-
ization technologies play a key role. Applications that a
user runs in a normal system are allowed to invoke any
system calls that the user is allowed to make, because
the programs are executed with all the privileges of the
user that invokes it. Defining access policies can help to
prevent some applications from deleting files, modifying
registry entries, making a network connection and so on.
The problem of this approach is the creation of the policy
files. It is very likely that a ”good-natured” application
is too restricted and it cannot conclude its work, but on
the other hand a malicious application sometimes has too
many privileges. As most commonly there is insufficient
prior knowledge of access requirements, correctly defining
which functions should be blocked is complicated and of-
ten not successful.

Virtualization in contrast to sandbox mechanisms offers
the ability to execute the untrusted application in an envi-
ronment that seems to the application as the unrestricted
host environment. In general, modifications of the physi-
cal machine are not allowed, but can be selectively com-
mitted and transferred to the host environment. Transfer
of state modifications to the host environment is one of the
most challenging tasks. How can desired modifications be
distinguished from unwanted ones? This question takes a
back seat in the SRS system, because most of the times
the requirement for changes to the host environment is not
given. In the case of sharing CPU cycles, no permanent
modification of the host environment is needed, only the
execution of the applicant’s desired application has to be
done. The only permanent modification of the host sys-
tem that can be required from SRS services is to store
data on the disk. This data can be the results of the com-
putation or naturally the data that should be stored for
the applicant. The type of data that has to be stored does
not include executable data.

After presenting technologies that are closely related to
and useful for the SRS system in this chapter, the next
chapter focuses on how these concepts can be applied to
application and computational sharing.

4 Application & CPU Sharing

The major problem according to application sharing is the
process of invoking programs on another device. How can
the supplier be sure that its device will not be damaged?
Which programs are allowed to be invoked, and which
are not allowed? Invoking programs is a critical task, be-
cause often through these programs security holes can be
used to, for example, accessing private data of the sup-
plier or even invoking some other programs that should
not be accessible to the applicant. We refer to securing
the invocation and execution of programs as application
security. A program that is invoked normally runs with
all the privileges of the supplier, which means that the lo-
cal disk can be accessed for reading and writing, processes
can be created and network connections can be opened
[3], [1]. Therefore the process of invoking has to be well
designed and secured. It must be granted to the supplier
that the supplier’s device will be protected from unwanted
access or data modification, that the supplier’s device will
not be harmed by malformed or malicious applications,
and that the supplier can control the usage and behaviour
of the service executed at all times, in such a way that the
user will not experience unwanted deterioration of perfor-
mance.

One important problem besides harming the provider’s de-
vice is the submission of false results. How can an appli-
cant be sure that the received results are correct? Can an
applicant recognize that the results have been tampered?
Protecting the authenticity and integrity of the sharing
application can increase the trustworthiness of the results.
Therefore the supplier should not be able to manipulate
the sharing application and the results.

Virtualization techniques can be used to hinder a provider
from sending false results. The main idea is to use an en-
closed, secure virtual machine that gets the input data in
an encrypted way and provides the results encrypted too.
Only during data processing the input and output will
be available in plaintext. Because the result is encrypted
when it leaves the secure virtual environment, it is dif-
ficult for the adversary to manipulate the cipher text in
such a way that it will be accepted as a valid result. The
complexity of manipulation depends on the applied en-
cryption scheme and additionally the used hash function.
This process is illustrated in Figure 5.

In the case that an adversary gets access to the secure
virtual machine or the data, and the algorithm is not en-
crypted, an attacker can easily send false results.

To make it more difficult for an adversary to submit false
results the integrity and authenticity of the service appli-
cation has to be protected too. This means that the service
application should not be modified by a supplier and the
supplier should not be able to modify and read results and
input data. If results have to be stored they should only
be stored encrypted on the device. The virtual machine

Provider’s device

Secure environment

Encrypted input
[

Plaintext
)’ DEC [

processing

Plaintext

Encrypted outgut:

Secured access

Figure 5: Secure Processing

is responsible for providing a secure environment that is
not accessible for the user. Furthermore the integrity of
the service application has to be proven before execution.
This proof can be based on encrypted checksums of the
binary data files of the application. Before execution of
the application the checksum is validated and indicates
whether an application has been tampered or not. This
procedure for example is also used in Entropia [1]. Similar
to computational sharing, virtual machines can be used to
allow a secure and isolated invocation of programs. The
process is as follows:

For all the services, a separate virtual machine will be
started, and programs can only be invoked within this
virtual environment. To make the virtual machines, the
service applications, the algorithms and the data nearly
inaccessible a trusted hardware, like a smart card or re-
lated to trusted computing the trusted platform module,
can be used. This module stores for example the secret
keys needed for the encryption of the input and output
data, the application etc. The use of smart cards is prefer-
able to the use of a built-in module because cards can
be exchanged easily, depending on the current application
needs. The virtual machine is furthermore responsible for
restricting and maintaining the access to local resources
of the supplier’s device, like disk space, network connec-
tions, and process creation. Also, no permanent changes
are allowed to take place. The whole process of applica-
tion sharing is temporary, and the status of the live system
will not be changed. This means that neither the appli-
cation sharing process will write data to the hard disk or
change registry entries, nor should private data of the user
be accessible. After completion of the application sharing
process, the system of the supplier should be exactly the
same as it was before. Therefore the program that will be
invoked has to run with restricted privileges. Virtualiza-
tion techniques, like the ones described before, are a must
and can grant beyond application security, confidentiality,
and a higher trust in the authenticity of the results.

5 Resumee and Future Work

In this paper we presented a concept for secure resource
sharing in ad hoc networks as a first step of a current
research topic. Concerning shareable resources, we have
identified four resource classes by now: information, stor-
age, CPU-power and applications. Technologies which
might be useful to implement this concept include vir-

tualization and sandboxing. The next steps include a de-
tailed analysis of special security needs and technologies
and mechanisms like trusted computing or anonymous au-
thentication. Besides technical aspects, there are several
legal aspects which have to be investigated, too. Here we
will focus on techniques providing traceability of actions,
non-repudiation and conservation of evidence, which may
be of importance when concerning fears of potential users
of the SRS system. After refining and elaborating the con-
cept, we will implement a prototype, in order to perform
some performance and security tests.

References

[1] B. Calder, A.A. Chien, J. Wang, and D. Yang. The entropia
virtual machine for desktop grids. In VEE 05: Proceedings
of the 1st ACM/USENIX international conference on Vir-
tual execution environments, pages 186-196, 2005.

[2] E. Dodonov, J.Q. Sousa, and H.C. Guardia. Gridbox: se-
curing hosts from malicious and greedy applications. In
MGC 04: Proceedings of the 2nd workshop on Middleware
for grid computing, pages 17-22, 2004.

[3] J.Y. Levy, L. Demailly, J.K. Ousterhout, and B.B. Welch.
The safe-tcl security model. In ATEC98: Proceedings of the
Annual Technical Conference on USENIX Annual Techni-
cal Conference, pages 23-23, 1998.

[4] Microsoft. Microsoft ~ completes acquisition
of softricity, last accessed 24.02.2008, 2006.
http://www.microsoft.com/presspass/press/2006/
jul06/07-17SoftricityPR.mspx.

[5] 1. Taylor. From P2P to Web Services and Grids Peers in a
Client/Server World. Springer, 2005.

[6] Y. Yu, F. Guo, S. Nanda, L.C. Lam, and T.C. Chiueh. A
feather-weight virtual machine for windows applications. In
VEE 06: Proceedings of the 2nd international conference
on Virtual execution environments, pages 24-34, 2006.

[7] M.J. Yuan and J. Long. Securing wireless j2me -
security challenges and solutions for mobile commerce ap-
plications. Technical report, IBM, University of Texas,
2002. http://www.ibm.com/developerworks/wireless/
library/wi-secj2me.html.

[8] M. Albano, A. Brogi, R. Popescu, M. Diaz, J. Dianes To-
wards Secure Middleware for Embedded Peer-to-Peer Sys-
tems: Objectives & Requirements. In proceedings of the
6th International Workshop on the Foundations of Coordi-
nation Languages and Software Architectures, Lisbon, Por-
tugal, 2007.

