
Runtime Integration and Testing for Highly Dynamic Service Oriented ICT
Solutions – An Industry Challenges Report

Michaela Greiler Hans-Gerhard Gross

Software Engineering Research Group
Delft University of Technology

Mekelweg 4, 2628 CD Delft, The Netherlands
{m.s.greiler|h.g.gross}@tudelft.nl

Khalid Adam Nasr

Logica
Prof. Keesomlaan 14

1180 AD Amstelveen, The Netherlands
adam.nasr@logica.com

Abstract
Modern Information and Communications Technology (ICT)
solutions are often widely distributed and highly dynamic
service oriented architectures (SOA) with stringent avail-
ability requirements. Availability implies that SOA must be
reconfigured, updated and maintained during runtime, while
retaining their overall operational integrity. This requires
that much of the adaptation, integration, configuration and
testing activities typically performed offline, during develop-
ment time, now have to be done online, during runtime. Cur-
rent component-based runtime platforms such as SOA real-
ize the technological foundations for runtime reconfiguration
and maintenance. However, because software engineering
methodology has not kept pace with the rapid leap forward
in platform technology, adequate methods, techniques and
tools for dealing with runtime integration and testing are not
yet available. This paper discusses the industry challenges
and open issues of integrating and testing SOA infrastruc-
tures during runtime.

1 Introduction
Modern ICT solutions are often widely distributed and
highly dynamic systems-of-systems (SoS). They provide
critical backbone infrastructure for organizations, and are,
therefore, increasingly subjected to high availability and de-
pendability requirements. High availability implies that SoS
must be reconfigured, updated, and otherwise maintained
during runtime, while retaining their overall operational in-
tegrity. Additional requirements comprise fast adaptation
to changing business processes and new context conditions,
such as changing standards, new legislation, or company
mergers. The dynamic nature and continuous operation of
modern ICT infrastructures demands that much of the com-
ponent integration, configuration and testing activities typi-
cally performed offline, during development time, now have
to be done online, during runtime.

Many organizations are in the process of migrating their
systems-of-systems to SOA, in order to remain competitive

in a rapidly changing world, meet the demands of flexibil-
ity and business efficiency, control complexity of current IT
infrastructure, and minimize development and maintenance
costs.

An IDC study on companies having successfully imple-
mented SOA in their businesses, indicates a range of bene-
fits from SOA [15]. SOA provides higher flexibility by en-
abling systems to cope with changing business requirements
more quickly and with less effort, by reusing components
or services that already exist. Integration of new compo-
nents in the existing system is facilitated. SOA increases
business agility, by simplifying the adaptation process, and
enabling enterprises to respond quickly to dynamic business
challenges. New services can be rolled out easier, and so-
lutions can be brought to the market at shorter lead time.
Reusability of code and services, but also business logic and
data models, decreases development costs and reduces risks
through reconfiguration. Because of the loosely coupled na-
ture of SOA, it becomes easier to integrate solutions from
different business partners, facilitating cooperation.

Current service oriented architectures realize the techno-
logical foundations for runtime integration and configura-
tion, act as enabling technology, and account for many ben-
efits. However, software engineering has not kept pace with
the rapid development of SOA technologies. In particular,
adequate methods, techniques and tools for dealing with run-
time integration, and the associated quality assurance tasks,
pose many problems in practice.

This paper compiles challenges and issues encountered
in evolving and testing SOA during runtime. The issues pre-
sented partly come from the literature on SOA, and to a large
extent from our experience in helping a number of enter-
prises to migrate their existing ICT infrastructures to SOA,
and extending them. Section 2 describes the main challenges
that the IT industry is facing when it comes to integration and
testing of services in a dynamic SOA environment. Section
3 concentrates on the concrete issues derived from the chal-
lenges in terms of research questions, which can be related



to managerial and technical problems. Section 4 presents re-
lated work, and finally, Section 5 summarizes and concludes
this industry challenge article, and gives an outlook on future
work.

2 Runtime Integration and Testing for SOA –
Industry Challenges

Through loose coupling of services, SOA provides the ideal
environment for reuse of existing sub-systems or compo-
nents, and for enhancement of service capabilities that were
not foreseen in the past. To a certain extent, they also pro-
vide mechanisms to support reconfiguration during runtime,
which is relevant to many systems in industry, e.g., surveil-
lance, transport, enterprise webs, online banking, trading.
Platform support is partially available for stopping and re-
suming services, runtime binding and un-binding, version-
ing, and service enhancement. That way, large distributed
systems can evolve over time, through adding new services
and removing obsolete ones, and reconfiguring the bindings
between the services during runtime. However, these prop-
erties account for a number of emerging challenges.

Stakeholder separation. None of the stakeholders in a
SOA is its (complete) owner [9]. This leads to a number of
managerial issues, such as lack in communication, restricted
influence on system evolution, uncertainty of service usage
within the overall SOA, or lack of an overall quality assur-
ance strategy. There are also technical issues. Service devel-
opers have access to the code of a particular part of the sys-
tem, e.g., for performing a full (white-box) unit test, but not
to that of the SOA in which their services are used. Here, the
services require testing according to the specification of the
integrating system [12]. Moreover, the service provider must
guarantee fulfillment of service contracts when amended,
while the service customer expects seamless availability of
the same service. Issues to be addressed come from runtime
discovery and binding of services, such as “what is the ef-
fect of integrating a new service?”, “is an updated service
still compatible with the others?”, “are the clients of a ser-
vice notified of any changes?”, “what can be (re-)tested if
the SOA is reconfigured?”, “how does runtime testing affect
the production system?”, “what is the overall reliability of an
evolving SOA?”

Service Integration. New business logic is introduced
through new components making up the services. Tradition-
ally, they are developed and tested in a development environ-
ment and then deployed in a production environment. How-
ever, typical ICT backbones are so complex and expensive
that they cannot be replicated easily for testing, and new ser-
vices, likely to behave differently in a new context, cannot
be assessed adequately in a separate testing environment. In
most industry-scale SOA, interactions are so complex that
the services can only be tested online in the context of the
running production environment. This creates a number of
interference challenges during integration and testing. One

of the techniques required is test-isolation [6, 11], separat-
ing testing from nominal operations, and managing runtime
resource allocation. Ownership and access limitations im-
ply black-box testing for services when they are integrated
during runtime, and require a test-awareness infrastructure
[6, 11, 13]. The main challenges to be addressed are “how
much of the test-isolation and test-awareness techniques can
be provided by the SOA platform to be reused, and how
much must be managed by the services themselves?”, im-
posing effort on the service developers.

Service Versioning and Migration. Updating existing
business logic and guaranteeing continuous service avail-
ability, is another challenge, e.g., in traffic control or multi-
tenant systems, which requires support for different versions
of the same service, as well as for migrating from an old
obsolete service to the new, updated version.

From our own experience, service versioning is not read-
ily done in industry. Old services are replaced by new ones,
causing rippling effects throughout the entire system. As
a result, clients cannot check the new services without in-
terrupting their own operation. Services should be updated
gracefully, giving clients the time to assess and update their
own states. Only if the SOA is stable with a new version,
should the old one be removed.

Common practice in industry is that changes to the ser-
vice implementation that are not conspicuous in the inter-
face, are often handled as minor changes, and are not no-
tified to service customers. The service provider justifies
this by claiming that only the service implementation has
changed and that the updated service should behave as the
previous one, which is often not the case. For example, a ser-
vice providing bank account information is specified through
the Web Service Description Language (WSDL), describing
two return values; (1) a String with the name of the account
owner, and (2) an integer as account number. If the service
implementation changes, it could be that the service behav-
ior still complies with this specification, but that it returns
the name as “lastname firstname” instead of “firstname last-
name”. This minor change might not have an impact on the
service provider, but it can well make a huge difference for
other parties. Further, state migration has to be addressed in
a way that service provider and customer always experience
a consistent system. Major questions to be tackled in this
realm are “what kind of changes, and how should changes
be broadcast in a SOA?”, “how should regression testing be
organized during runtime, and how can it be optimized with
respect to the performance of the whole system?”

Service Binding and Reconfiguration. Beside integration
of new services, runtime reconfiguration may also take place
according to capacity planning strategies, load balancing,
Quality of Service or security requirements. Binding occurs
at runtime, without notification and without the consumer
being able to influence the updating process (ownership is-
sues), and without permitting proper adaptation to the new



configuration. The consumers affected by a reconfiguration
should be put into the position to react to changes of this
kind. This requires a way to assess the likely impact of re-
configuration, and to notify the right other services affected,
so they can employ their own built-in counter-measures.

Questions related to these challenges are “how can recon-
figuration and late binding be addressed during runtime?”,
“what are good mechanisms to assess reconfiguration im-
pacts?”, “what are good reaction strategies for the services?”,
and “how can testing facilitate correct binding?”

3 Directions for Addressing the Challenges
Some challenges related to technical issues described above
can be addressed through support technologies built into
SOA. Mechanisms for installing, starting, updating, stop-
ping and uninstalling services during runtime are available
for some frameworks, even without having to restart the plat-
form, such as the IBM WebSphere suite1, or OSGi [1]. Addi-
tional functions exist for service discovery and late binding,
and for runtime service orchestration, which is supported
through a centralized registry. Version management and ex-
plicit definition of service dependencies are also supported
by some platforms [1]. However, the methodical and techni-
cal issues of SOA runtime testing have not been discussed in
the literature.

3.1 Methodical Issues
Even though, many methods and techniques are readily
available, their transfer to industry is cumbersome. Such
methods comprise built-in testability infrastructure in sup-
port of runtime testing and monitoring, and verbose services
providing additional query interfaces [14]. Industry is not
aware of such techniques, or transfer strategies are lack-
ing. For example, built-in testing infrastructure is not of-
ten used in industry, so that stakeholders cannot (re-)assess
compatibility and conformance of services with their respec-
tive WSDL documents in situ of the running system. But
this is also a technical problem, in that platforms do not in-
corporate even the most basic support for built-in testing,
so that organizations have to build such infrastructure them-
selves. Therefore, an important research direction is repre-
sented by questions concerning “which built-in testing infra-
structure can be allocated to a platform, and how much must
be provided by services themselves?”, and “how should this
be managed within an overall quality assurance plan?”

Also, stakeholder separation and system ownership has to
be resolved through clear protocols of communication and
collaboration between different parties. Developers are not
directly tied to customers, nor to system integrators, lead-
ing to unclear roles and responsibilities in SOA. Research
questions are “what are the responsibilities of the service
provider, integrator and the customer/user?”, “who decides
on system evolution, and who implements them?”, “how
can the customer gain influence in the updating process?”,

1http://www-01.ibm.com/software/websphere/

“how to capture evolution requirements?”, “which mecha-
nisms are required to propagate system changes?” Industry
has to change attitude from merely building systems to con-
ducting and managing them, while increasing software qual-
ity and reliability, and providing customer satisfaction. The
business and software processes dealing with integration and
evolution, have to be reconsidered and adjusted towards bet-
ter provider-integrator-customer communication, clarifying
responsibilities, duties, and exercise of influence.

One might believe that decoupling of services causes de-
coupling of the stakeholders, e.g., in that the customer does
not care about a specific service implementation. However,
the opposite is true. For system-level quality assurance it
is essential that the stakeholders are tightly coupled, which
opens up another issue, i.e., that of trust and privacy or non-
disclosure. Here, the primary concern is “how to manage
access to system parts for testing and assessment without vi-
olating the intellectual property of a service provider, or the
privacy of a customer?”

3.2 Technical Issues

Extended Lifecycle Support. Even though SOA plat-
forms already provide lifecycle support of components, we
believe this needs to be enhanced. Installation, update, and
deletion can be done at runtime, however, update actions
may be implemented as a combination of stopping and unin-
stalling a component, and then re-installing and starting a
new one [1]. This renders all registered services unavailable,
with effect on all dependent services that cannot fulfill their
own obligations. The same holds for service orchestration.
Process execution chains may be enhanced during runtime,
thereby influencing the process chain, although, currently
more elaborate changes to the process execution, like adding
a whole new option branch, cannot be done at runtime. Life-
cycle and orchestration issues lead to research questions such
as “how to organize a non-interfering update process?”, and
“how to enable complete runtime process updates?” Future
requirements towards runtime testing go beyond what is cur-
rently feasible.

Central Auditing Authority. In addition to a passive ser-
vice registry, such as an Universal Description, Discovery
and Integration (UDDI) registry, a SOA environment should
provide an active auditing authority [5]. Further we argue
that the central authority should not only manage service reg-
istrations, but also propagation of reconfiguration events, and
conduction of runtime testing activities. This is because the
service registry is not typically aware of all service user re-
quirements. Research questions in this realm comprise “how
should a more intelligent registry be designed?”, and “how
should system evolution and testing requirements and events
be propagated?”

Required Additional Information. The ability and the
quality of testing are strongly influenced by available in-
formation, and its quality in terms of formalization degree,



completeness and consistency. Dependencies between ser-
vices have to be described explicitly to facilitate integration
and regression testing. Nevertheless, WSDL has major de-
ficiencies in describing dependencies between services and
invocation sequences [21]. Such explicit dependencies are
particularly important for runtime testability analysis [11].
A primary question to address this challenge is “how can de-
pendencies be made explicit between individual services?”

State Transfer. The transfer of states is still an open issue.
From a testing perspective, a service is seen as stateful if the
result from a service invocation is not exclusively dependent
on the input parameters, so that it delivers a different result
depending on its previous usage. The main questions are
“how can states be transferred to the new updated version of
the component?”, “do they have to be transferred, anyway?”,
and “how can states be synchronized for two versions of the
same service?”

Automated Test Generation. By definition, runtime test-
ing must be automated, because it will be initiated automat-
ically through reconfiguration events. In order to being able
to check service integration properly, integration and regres-
sion test cases should be derived during runtime as well.
Services should provide built-in tests and also models de-
scribing their provided and expected behavior. Integrating a
component requires awareness about dependencies between
a new component and the framework in which it will operate,
as well as explicit descriptions of service compositions. The
operational sequence of service cooperation and the compo-
sition of services should be described explicitly in a way that
functional accordance can be tested against it [18]. Mon-
itoring the behavior of previous correct service executions
can be used for testing purposes for functional equivalence
testing. Questions to be addressed are “which artifacts and
information are indispensable to enable automated test gen-
eration?”, or “how can reverse-engineering of models during
runtime improve automated testing of SOA?”

Runtime Testability. Since runtime testing is performed
while the system is operational, the nominal production-
execution must not be affected by testing activities, requir-
ing test-isolation and test-awareness [6, 11] which are also
related to test-sensitivity. Testing communication with a ser-
vice can have effects on the production execution, e.g., by
changing the internal state of a component or by produc-
ing undesired side effects. Test-sensitive services have to
be aware of the fact that they are tested, in order to sepa-
rate testing from nominal messages, which is referred to as
test-isolation. Test-isolation could require simulating parts
of functionality or disabling functions during runtime test-
ing. Test-isolation inherently changes the nominal behavior
of a system, leading to a number of new issues to be ad-
dressed. Questions are “what are adequate test-sensitivity
and isolation-techniques for SOA”, and “to which extent can
they be provided by the SOA runtime platform?”

Performance Overhead. Runtime testing also creates sys-
tem performance issues. Ideally, the performance of the
nominally executing system should not be hampered by run-
time testing, and a number of strategies may be used. Re-
gression tests can be minimized based on detailed informa-
tion about reconfigurations, and by specifying likely rippling
effects accurately. The literature on testing commercial-off-
the-shelf components (COTS) can provide valuable pointers
for testing SOA [8]. Service provider or developer cannot
test a service within its deployment context, and they can
not foresee all possible deployment scenarios. Aggravat-
ing circumstances come through limited access to the ser-
vice (source code, documentation) because of intellectual
property issues. Classical white-box testing approaches are
not feasible [4, 6, 13]. Changes to service implementation
have to be explicitly made public to facilitate regression test-
ing, and, therefore, reduce performance overhead at runtime.
Questions to be tackled in this area are “how can test results
be reused to optimize regression testing?”, and “how can test
orders influence and reduce testing overheads?”

The discussed topics challenge industry especially be-
cause existing technologies and methods that would be ap-
plicable are not used at all. Knowledge transfer can help to
address challenges like the lack in information, automated
test generation and runtime testability. On the other hand,
challenges like state transfer require further basic research.

4 Related Work

To the best of our knowledge, runtime testing of service cen-
tric software has not been studied in depth. Brenner et al.
present strategies for testing web services online, based on
state behavior [6]. Testability, prerequisite for runtime test-
ing, is studied by Tsai et al. [19], with particular focus on
SOA, and by Gonzalez et al. [11], with focus on component-
based systems, in general. Still, many open research ques-
tions remain in this area, as outlined in this article.

In a broader context, [16, 23] concentrate on runtime test-
ing of component based-software, and provide valuable in-
put also for future research in the area of highly dynamic
SOA. A first step towards test reconfiguration based on dy-
namic changes in SOA environments is presented by [2].

Other related work focuses on testing SOA applications
during development and deployment, and highlights web ser-
vices as implementation option. However, they do not con-
sider testing during operation time. Bucchiarone et al. dis-
cuss general problems during integration testing of web ser-
vices [7]. Integration testing is addressed by Tsai et al. [20],
presenting Coyote, an Extensible Markup Language (XML)
based integration testing framework; by Bartolini et al. [3],
discussing testing of data-flows in web service compositions;
and Bertolino et al. [5]. Testing of SOA, in general, is dis-
cussed in [8, 9, 10, 22]. Many used concepts are borrowed
from the distributed domain [17].



5 Summary, Conclusions, and Future Work
Modern ICT solutions must be reconfigured and updated at
runtime, so that much of the component integration, config-
uration and testing activities now have to be done online as
well. In this paper, we presented and discussed the primary
industry challenges of runtime integration and testing com-
piled from our experience with working in the domain of
SOA and based on the literature. We conclude that runtime
evolution and testing of SOA can only be implemented suc-
cessfully if, especially, the communication between stake-
holders, and the test-isolation and test-awareness of services
are improved.

The primary issues that we have planned to address are
(1) “which information is provided by industry to enhance
runtime testability?”, (2) “to which extent can it be used to
automate the testing process?” and/or (3) “how can other
mechanisms and techniques be applied to cope with the lack
of information, e.g., reverse engineering of models from ex-
ecutions?” That way, we intend to advance the state of prac-
tice in runtime evolution and testing of highly dynamic ser-
vice oriented ICT solutions.

Acknowledgments. This work has been funded by
the Dutch Government through the Jacquard program
(www.jacquard.nl).

References

[1] O. Alliance. OSGi Service Platform Core Specification, re-
lease 4, version 4.1 edition, 2007.

[2] X. Bai, D. Xu, and G. Dai. Dynamic reconfigurable testing
of service-oriented architecture. In COMPSAC ’07: Proceed-
ings of the 31st Annual International Computer Software and
Applications Conference - Vol. 1- (COMPSAC 2007), pages
368–378, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[3] C. Bartolini, A. Bertolino, E. Marchetti, and I. Parissis. Data
flow-based validation of web services compositions: Perspec-
tives and examples. pages 298–325, 2008.

[4] B. Beizer. Software testing techniques (2nd ed.). Van Nos-
trand Reinhold Co., New York, NY, USA, 1990.

[5] A. Bertolino and A. Polini. The audition framework for
testingweb services interoperability. In EUROMICRO ’05:
Proceedings of the 31st EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications, pages 134–
142, Washington, DC, USA, 2005. IEEE Computer Society.

[6] D. Brenner, C. Atkinson, O. Hummel, and D. Stoll. Strategies
for the run-time testing of third party web services. In SOCA
’07: Proceedings of the IEEE International Conference on
Service-Oriented Computing and Applications, pages 114–
121, Washington, DC, USA, 2007. IEEE Computer Society.

[7] A. Bucchiarone, H. Melgratti, S. Gnesi, and R. Bruni. Test-
ing service composition. In Proceedings of the 8th Argen-
tine Symposium on Software Engineering (ASSE’07) Mar del
Plata, Argentina, pages 29–31, August 2007.

[8] G. Canfora and M. Di Penta. Testing services and service-
centric systems: Challenges and opportunities. IT Profes-
sional, 8(2):10–17, 2006.

[9] G. Canfora and M. D. Penta. Software Engineering, chapter
Service-Oriented Architectures Testing: A Survey, pages 78–
105. Springer Berlin / Heidelberg, 2009.

[10] S. Dustdar and S. Haslinger. Testing of service-oriented ar-
chitectures a practical approach. In Object-Oriented and
Internet-Based Technologies, 2004.

[11] A. González, É. Piel, and H.-G. Gross. A model for the mea-
surement of the runtime testability of component-based sys-
tems. In 5th Workshop on Advances in Model Based Testing
(A-MOST 2009), pages xx–xx, Denver, Colorado, Apr. 2009.
IEEE Computer Society (to appear).

[12] H. Gross. Component-based Software Testing with UML.
Springer, Heidelberg, 2005.

[13] M. Leucker and C. Schallhart. A brief account of runtime
verification. Journal of Logic and Algebraic Programming,
2008. in press.

[14] M. Momotko and L. Zalewska. Component+ built-in testing:
A technology for testing software components. In Founda-
tions of Computing and Decision Sciences, 2004.

[15] S. Rogers. A study in critical success factors for
SOA. Technical report, Sponsored by Hewlett-Packard,
http://www.cio.com/documents/whitepapers/ 6IDCSuccess-
Framework.pdf, September 2008.

[16] D. Suliman, B. Paech, L. Borner, C. Atkinson, D. Brenner,
M. Merdes, and R. Malaka. The morabit approach to runtime
component testing. In COMPSAC ’06: Proceedings of the
30th Annual International Computer Software and Applica-
tions Conference (COMPSAC’06), pages 171–176, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[17] A. S. Tanenbaum and M. V. Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall PTR, Upper Sad-
dle River, NJ, USA, 2001.

[18] W. T. Tsai, Y. Chen, and R. Paul. Specification-based veri-
fication and validation of web services and service-oriented
operating systems. In WORDS ’05: Proceedings of the 10th
IEEE International Workshop on Object-Oriented Real-Time
Dependable Systems, pages 139–147, Washington, DC, USA,
2005. IEEE Computer Society.

[19] W. T. Tsai, J. Gao, X. Wei, and Y. Chen. Testability of
software in service-oriented architecture. In COMPSAC ’06:
Proceedings of the 30th Annual International Computer Soft-
ware and Applications Conference, pages 163–170, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[20] W. T. Tsai, R. Paul, W. Song, and Z. Cao. Coyote: An xml-
based framework for web services testing. In HASE ’02: Pro-
ceedings of the 7th IEEE International Symposium on High
Assurance Systems Engineering, page 173, Washington, DC,
USA, 2002. IEEE Computer Society.

[21] W. T. Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang. Extend-
ing wsdl to facilitate web services testing. In HASE ’02: Pro-
ceedings of the 7th IEEE International Symposium on High
Assurance Systems Engineering, page 171, Washington, DC,
USA, 2002. IEEE Computer Society.

[22] W. T. Tsai, X. Zhou, Y. Chen, and X. Bai. On testing and
evaluating service-oriented software. Computer, 41(8):40–
46, 2008.

[23] J. Vincent, G. King, P. Lay, and J. Kinghorn. Principles
of built-in-test for run-time-testability in component-based
software systems. Software Quality Control, 10(2):115–133,
2002.


