
Code Ownership and Software Quality:

A Replication Study

Michaela Greiler

Microsoft Corporation

Redmond, USA

mgreiler@microsoft.com

Kim Herzig

Microsoft Corporation

Cambridge, UK

kimh@microsoft.com

 Jacek Czerwonka

Microsoft Corporation

Redmond, USA

jacekcz@microsoft.com

Abstract—In a traditional sense, ownership determines rights

and duties in regard to an object, for example a property. The

owner of source code usually refers to the person that invented the

code. However, larger code artifacts, such as files, are usually

composed by multiple engineers contributing to the entity over

time through a series of changes. Frequently, the person with the

highest contribution, e.g. the most number of code changes, is

defined as the code owner and takes responsibility for it. Thus,

code ownership relates to the knowledge engineers have about

code. Lacking responsibility and knowledge about code can reduce

code quality. In an earlier study, Bird et al. [1] showed that

Windows binaries that lacked clear code ownership were more

likely to be defect prone. However recommendations for large

artifacts such as binaries are usually not actionable. E.g. changing

the concept of binaries and refactoring them to ensure strong

ownership would violate system architecture principles. A recent

replication study by Foucault et al. [2] on open source software

replicate the original results and lead to doubts about the general

concept of ownership impacting code quality. In this paper, we

replicated and extended the previous two ownership studies [1, 2]

and reflect on their findings. Further, we define several new

ownership metrics to investigate the dependency between

ownership and code quality on file and directory level for 4 major

Microsoft products. The results confirm the original findings by

Bird et al. [1] that code ownership correlates with code quality.

Using new and refined code ownership metrics we were able to

classify source files that contained at least one bug with a median

precision of 0.74 and a median recall of 0.38. On directory level,

we achieve a precision of 0.76 and a recall of 0.60.

Index Terms— Empirical software engineering, code ownership,

software quality

I. INTRODUCTION

In recent years, a number of studies investigated the impact

of code ownership and organizational structure on software

quality and reliability [1, 2, 3, 4, 5, 6, 7]. Code ownership—the

number of engineers contributing to a source code artifact and

the relative proportion of their contributions—determines

collaboration networks among software developers. These

networks and their underlying organizational structures

influence the programming behavior of developers and their

communication channels. As shown by previous studies code

ownership and organizational structure impacts code quality.

Code ownership and in particular the lack of ownership is likely

to cause the lack of responsibility for code parts that an engineer

does not own. Thus, code without a strong owner might have no

champion who will take responsibility to maintain and test the

code. Without such code owners, knowledge about the inner

working and functionality of code might be limited or may be

lost completely.

Bird et al. [1] (henceforth referred to as original study for

sake of brevity) showed that weakly owned Windows binaries—

binaries where many engineers contribute small amounts of

code—are more likely to be defect-prone than strongly owned

Windows binaries, for both Windows Vista and Windows 7.

Large software products such as Microsoft Windows or

Microsoft Office are composed of thousands of individual

executable files (.exe), shared libraries (.dll), and drivers (.sys),

which are referred to as binaries. While the results presented in

the original study are convincing, these results for binaries are

too coarse granular to be actionable for product teams. Binaries

tend to comprise large numbers of individual code entities and

are unlikely to be strongly owned by a single or even a few

developers. However, distributed ownership for binaries does

not imply that individual lower level code entities, e.g. source

files, have the same weak ownership. A weakly owned binary

can contain hundreds of code entities each owned by a single

engineer. Further, recommendations for binaries are usually not

actionable. Changing the concept of binaries and splitting

existing binaries into smaller pieces for the sake of ensuring

strong ownership would violate system architecture purposes

and principles.

To make the results more actionable for engineers, we

decided to look at two different granularity levels: we use the

smallest logical and physical entity comprised in a binary, i.e.,

files as unit of investigation. However, bug distributions on file

level can be very sparse leading to highly unbalanced data sets—

data sets in which the number of source files that contained a

code defect is very small, e.g. below 1%. The finer the level of

granularity, the more unbalanced the data sets will become.

Therefore, we decided to choose an intermediate level of

granularity that lies between binaries and source files: code

directories. Directories are logical groupings of files that often

share some common properties. While we newly investigate the

file level for Microsoft products, we replicate the study by

Foucault et al. [2] who investigated open source systems on file

level granularity previously. We check if results reported by Bird

et al. [1] are valid for finer levels of granularity and generalize

beyond Windows and whether results reported by Foucault et al.

[2] on file level (i.e., no impact on quality) can be confirmed on

Microsoft products.

 More specifically, we make the following contributions:

 We widen the set of Microsoft products under investigation

to four main Microsoft product: Office, Windows,

Office365 and Exchange (Section III);

 We extended and refined the set of ownership metrics as

defined by Bird et al. [1] in Section IV;

 We investigated how well the newly refined ownership

metrics correlate with applied bug fixes on two actionable

levels of granularity: code directories and source file level

(Section III and Section V);

 We show that our ownership metrics can be used to predict

software bugs with a median precision of 0.76 and a median

recall of 0.60 on directory level (Section V);

 We show that the number of contributors and the percentage

of edits of the lowest contributor seem to be the most

important code ownership metrics when classifying

defective code files and code directories (Section V);

 We provide a set of recommendations for managing

ownership (Section VI.B).

II. SUMMARY OF THE ORIGINAL STUDY

In this section, we give a brief overview of the original study

design [1], but refer the interested reader to the original study for

more details. The original study investigated two releases of the

Windows software system: Windows Vista and Windows 7. For

both systems, the authors assessed whether their defined

ownership metrics relate to pre-release and post-release defects.

In particular, the original study used the following

terminology and metric definitions, which we closely follow:

- A contributor has made commits/software changes to

the software component.

- A software component as a unit of development that has

some core functionality.

- A minor contributor is a contributor who made less than

a predefined threshold of the changes to a component.

- A major contributor is a contributor who made more

than the predefined threshold of changes to a

component.

- Ownership is defined as the proportion of commits a

contributor made to a component relative to the total

number of commits to that component.

Based on those definition, the authors define those metrics:

- Minor: the number of minor contributors

- Major: the number of major contributors

- Total: the number of total contributors

- Ownership: the percentage of changes of the contributor

with the highest number of changes.

The authors used spearman rank correlation to check

whether their ownership measurements relate to the number of

pre-release and post-release code defects for each release.

In addition, the authors performed multiple linear regression

to compare normal software measurements (such as size and

complexity) with ownership measurements. The authors

1 There exist many differences between box and service products. Most

importantly, code defects for service products can be fixed within seconds

conclude that for all binaries the defined ownership metrics have

a relation to pre- as well as post-release defects.

III. EXPERIMENTAL SETUP

This section details our experimental setup. It includes our

research question, descriptions of our research methodology and

evaluation, and explains deviations to the original study.

A. Research Questions

To understand the impact of ownership measured on source

file and directory level on code quality, we investigate the

following research questions:

RQ1: Are ownership metrics indicative for code quality for

other software systems than for Windows?

RQ2: For which levels of granularity (directory and source

file) do ownership metrics correlate with code quality

measured by the number of fixed bugs?

RQ3: Can ownership metrics be used to build classification

models to identify defective directories and defective source

files?

RQ4: What are the reasons for a lack of ownership?

B. Study Subjects

We investigated four major Microsoft products: Office,

Office365, Exchange, and Windows.

We chose this set of products for a number of reasons. First,

the set of products represents products of different nature. While

Office and Windows are classical box products that are shipped

to customers, Office365 and Exchange represent service

products1. Second, each product, even within a group of

products, was developed using different development

methodologies and cultures, e.g. different branching structures,

release cycles, componentization concepts, etc. However, each

product in itself is a complex system under active development

with hundreds of engineers and major development efforts for

each release.

For each of the investigated products we analyzed one to

three release cycles, reaching from 3 years for Exchange to 1

year for Office. For Office, we analyzed two releases Office 15

(OF15) and Office 16 (OF16). For Exchange we analyzed the

two major releases Exchange 2013 (Ex13) and Exchange 2015

(Ex15). Additionally, we analyzed one release of Windows

(Win) and one release of Office365 (O365).

Each of these software systems comprises several millions

lines of code, and during the respective release cycles several

hundred thousand changes were applied.

C. Measuring Code Quality

For this study, we use data provided by a Microsoft internal

mining tool called CodeMine [8]. CodeMine is a platform that

comprises mined repository data for all major Microsoft

products. Among these repositories are version control systems

and bug databases which allow us to identify file changes from

by rolling back changes. Defects shipped to customers in box products

require customer action and tend to be more expensive.

version control commits and to link these changes to bug reports.

We measure code quality by counting the number of bug fixes

that are linked to a code artifact, e.g. a source file. We assume,

the higher the number of bug fixes, the lower the code quality of

that artifact. The bug data we use represents all bugs fixed during

the investigated release cycles (see Section III.B). Thus, bug data

sets for a release N of a product P contains pre-release bug fixes

for release N. Some of these bug fixes might be post-release

fixes for a release N-1 or earlier. CodeMine parses commit

message (product teams used keyword identifiers to mark bug

references) of applied code changes to identify bug reports that

were referenced by the applied code change. The identified bug

reports are then associated with all files checked-in by this

commit. For directories, we aggregate the number of distinct

bugs associated to all source files.

Independent of the product under study, the majority of files

have no bug fixes assigned. Only a very low number (less than

0.02%) of files are outliers with more bugs assigned. Thus, our

data sets are highly unbalanced and the vast majority of code

artifacts will be defect free. This is especially true on source file

level, making it hard for any machine learner to learn from the

few defect prone instances. This is one of the reasons why we

are also investigating source directory level where the data sets

will be less deranged, but still unbalanced.

D. Statistical Evaluation and Bug prediction

To understand the relations between our ownership metrics

and the number of fixed bugs, we investigate correlations

between the ownership metrics defined in Section IV and code

quality measures defined in Section III.C. Further, we train and

test random forest machine learners to build classification

models to identify files and directories that are associated to at

least one bug fix. Finally, we use metric importance analysis to

estimate the predictive power of the different metrics.

Our definition of code ownership will be based on code

changes (see Section IV). Artifacts changed only once will be

strongly owned. These instances are not helpful to establish a

model using ownership values to decide whether a code artifact

is defective, we ran two independent sets of experiments. One in

which we consider all code artifacts and one for which we

remove code artifacts that were changed only once. All statistical

experiments were conducted using the R statistical software2.

Correlations

Correlation values presented in this paper are—as in the

original study—Spearman rank correlation values suitable for

non-normalized data. Correlation values lie between -1 and 1

and describes how well the dependency between two metrics can

be described using a monotonic function. A correlation value of

1 or -1 occurs when one metrics is a perfect monotone function

of the respectively other measurement. Nearly all code metrics

highly correlate with size measures; e.g. the higher the number

of files in source directory, the higher the number of weakly

owned files. Thus, we normalized metrics by corresponding size

2 http://www.r-project.org/

measurement. For more details on the size measure used for

normalization, please see the metrics description in TABLE I.

All metric correlations have been checked for statistical

significance by performing a Spearman correlation test and a

Mann-Whitney U test. All reported values are statistically

significant showing p-values below 0.01. As for any other study

that uses statistical models to investigate relational phenomena

please remember that correlation does not imply causality.

Classification Models

Further, we use random forest machine learners3 [9] to train

and test classification models to identify defective source files

and directories. Analogue to the original study, classification

models trained and tested in this study distinguish code artifacts

that were fixed at least once from those that were not fixed.

For each product, we split the overall data set of files and

directories into two subsets. One subset containing two third of

the original data points for training purposes, the remaining data

for testing purposes. To split the data into representative

samples, we used a stratified repeated holdout setup—sampling

preserves the proportion of positive and negative instances in the

original data in both training and testing sets. We further remove

metrics that show correlation values of 0.9 or above to any other

metrics. Using principal component analysis (PCA) we ensure

that all feature vectors used to train the classification model are

orthogonal to each other. Thus, all feature vectors used to train

the classification models are independent. Each dataset is

sampled 10 times (10 cross-fold). We report the mean precision,

recall, and f-measure values.

Metric Importance

To estimate the predictive power of individual ownership

measurements, we used the filterVarImpl function of the caret

package [10] for R. The function conducts “a series of cutoffs

[…] to the predictor data to predict the class. The sensitivity and

specificity are computed for each cutoff and the ROC curve is

computed. The trapezoidal rule is used to compute the area under

the ROC curve. This area is used as the measure of variable

importance” [10]. Please note that these metric importance

measures may not match the spearman rank correlation results.

While the rank correlation considers the exact order of all

entities, classification models simply separate entities into

categories. The suitability of a metric to solve either problem

may be different.

E. Qualitative Evaluation

We collaborated with engineers from all investigated

products to ensure that we understand their development

processes (bug assignments, release cycles, methodologies and

style of collaboration), which is crucial for a sound data analysis.

We further choose Microsoft Office as the product we

engage with to complement our statistical evaluations with

interviews and close interaction on the research results. Office

seemed of particular interest for this study as they specifically

encourage people to move within the organization leading to

“collective” code ownership.

3 Random forests are ensembles of decision tree classifiers that grow

multiple decision trees each voting for the class an instance to be classified.

With Office, we had several feedback loops over the course

of 10 month. The close collaboration with product teams

comprised one-on-one discussions, presentations for several

different teams, and one-on-one interviews with 6 engineers

familiar with the source code. Insights gathered during those

sessions were crucial to understand the different reasons for

weak code ownership, their implications and the actionable

countermeasures.

Participants were chosen based on their knowledge about

particular files and sub directories in components (such as Excel,

Word, PowerPoint, etc.), time availability and willingness of

participation. Most of the engineers interviewed where Software

Developers or Software Development Leads. Also a Tester and

a Product Manger have participated in discussions and meetings.

In addition to the 6 Office team members, 3 more engineers of

other teams were involved in the discussions.

IV. MEASURING OWNERSHIP

There exist multiple ways to measure ownership, especially

for source code. In our particular case, we were interested in a

measurement that reflects the notion of responsibility—how

many engineers are currently contributing to the code and does

a main contributor exist? The assumption is that main

contributors show responsibility for their code and act as a

human quality guard, e.g. reviewing code changes and writing

tests to ensure high quality. Modifying code that has no such

guard may risk quality issues.

Analogue to the original study, we base our ownership

metrics on check-ins to code repositories, i.e., file changes that

have been committed to the code repository. We also treat one

check-in as one change to the files attached—irrespectively of

the size of the change, i.e., how many line of code have changed.

Lines of code (churn) is in general a difficult metric as changing

one line in one file, might represent a much more complex task

than adding a new method comprising several lines of code. To

make a change to a file, the engineer has to be knowledgeable

about the file irrespectively of the number of lines changed. We

only consider changes to files that comprise source code or

product configuration information, excluding non-code files

such as images or build related configurations. Please note that

we also ignore code changes that apply bug fixes for ownership

measurements. Bug fixes relate to corrective rather than

inventive maintenance tasks and thus have only limited value

when measuring code ownership. Nevertheless, we replicated

the whole analysis with the complete set of changes. The results

are very similar to the outcomes reported in this study. No

significant changes could be observed.

In the original study, components were large Windows

binaries. In our study, we deviate in the definition of software

component, as we will look either at source code files or at

source directories that contain source code files as a unit of

development. We group all source files that have the same

enclosing system path name, e.g. “c:\source\directory\name”,

into the same group of source files, referred to as directory.

Please note that this definition is not recursive. Thus, code files

located in a directory 𝐷𝑙𝑒𝑣𝑒𝑙 𝑛 that is a sub-directory of another

directory 𝐷𝑙𝑒𝑣𝑒𝑙 𝑛−1 belong only to 𝐷𝑙𝑒𝑣𝑒𝑙 𝑛 but not to 𝐷𝑙𝑒𝑣𝑒𝑙 𝑛−1.

On file level, we made a differentiation between files that have

only been edited once in the release, and files that have been

edited at least twice. We did that because files that have been

edited by only one engineer can per default be only strongly

owned. These files will not help us to establish a connection

between ownership and code quality; in fact, these files may

influence correlation values. As discussed in Section III.D, we

ran two separate experiments, one set of experiments includes

all files and one set ignores files changed only once. As we

could not easily define a similar exclusion on directory level,

we calculated correlations, precision and recall for all

directories, regardless how often files have been edited.

Because the size of a software component differs from the

original study, we also deviate from the original percentage of

the contributions considered for minor and major contributors.

Originally, the threshold for minor and major contributors was

set to 5%. A developer that applied more than 5% of all changes

during the monitored time window was considered a major

contributor. Source files tend to have much fewer contributors.

Thus, the percentage of contributions made by one engineer also

tends to be differently distributed as for large binaries, a fact that

Foucault et al. [2] ignored in their study leaving the threshold at

the original 5% as defined by Bird et al. [1]. After analyzing

distribution values, we set the threshold for minor and major

contributors to 50%. This means that a contributor that commits

50% or more of the changes is seen as major contributor, and a

contributor with less than 50% changes is a minor contributor.

In addition to the metrics originally defined by Bird et al. [1]

and briefly discussed in Section II, we added few new ownership

metrics and also metrics that reflect the organizational structure

of a team or division, as detailed in the next section.

A. Metrics

We divide our metrics in individual and organizational

ownership metrics for both levels of granularity: source files

and directories. All metrics are summarized in TABLE I.

Individual Ownership

The set of individual ownership metrics addresses the direct

involvement of engineers by measuring their commits to the

code base. On file level, we look at the total number of

contributors, the percentage of commits for the contributor with

the highest number of commits (ownership), and the number of

contributors with less than 50% of ownership (minors), and less

than 20% of ownership (minimals). Those metrics follow very

closely the originally defined metrics.

For directory level, we aggregate the originally defined and

slightly modified metrics, by aggregating file based ownership

metrics and by normalizing those using appropriate size

measurements. Note that given our definition of file level

metrics, those do not need to be normalized as they are based

entirely on the number of edits and not on the length of the code.

Details on metric formulas can be found in TABLE I.

In particular, for directories we look at the average of the

ownership values (avgownership), the percentage of commits of

the highest contributor (ownershipdir), and the average number

of distinct contributors (avgcontributors). Additionally, we

measure the average number of minor contributors (avgminors),

the percentage of distinct minor (pcminors), minimal

(pcminimals), and major (pcmajor) contributors. Apart from

those direct derived metrics, we also defined additional directory

specific measures. In the original study, Bird et al. revealed that

the more minor contributors a binary has the more vulnerable it

is for defects. We feel that in addition to the original minor

metrics counting the number of contributors, a more fine-grained

metric covering the percentage of commits of the lowest

contributor (minownerdir) might be a good indicator of

ownership. The smaller the percentage, the more likely this

contributor has limited expertise in this area and therefore

4 Minownedfile is referencing one file only and therefore does not

require any size specific normalization.

introduces more defects. Similar, we use the file with the lowest

ownership value per directory (minownedfile)4, as we feel this

value could give additional predictive power in addition to the

average values. Finally, we measure the percentage of weak

owned files, i.e., files that do not have a strong contributor

making more than half of the commits (weakowneds).

Organizational Ownership

This metric set abstracts from the individual engineers, and

looks at organizational structures, i.e., management hierarchies

to determine ownership. The rationale behind organizational

structures as code ownership metrics is twofold: First,

organizational structures not only determine which engineers

work together, but also influence their programming behavior

and communication channels and thus also the quality of source

code. In addition, collective code ownership might decrease the

ownership of individual engineers per artifact, but a strong

ownership might still be visible when measured at team level.

The organizational structure of development teams can be

represented as an organizational tree. Each node of the tree

corresponds to a person. Manager nodes have children

representing persons directly reporting to the manger. We can

translate the levels in a tree into management levels. The root

node is the CEO of the company, i.e., manager level zero.

Managers directly reporting to her are level one managers, etc.

A more detailed discussion is presented by Nagappan et al. [4].

For Microsoft, we can infer that managers represent at level

3 company divisions, at level 4 broader product teams, and at

level 5 smaller sub teams within product teams. The

organizational tree allows us to measure how many different

teams and even divisions contribute to source code files and

directories. We interpret the organizational tree as a description

of official communication paths and responsibilities. Two

engineers reporting to the same manager are likely to have daily

personal contact compared to engineers having no common

direct manager. Therefore, we derive the organizational metrics

by counting all manager at a certain level instead of the

individual engineers that perform the commits. For example,

when four engineers commit to a single file, but only three report

to the same manager on level 5, then our organizational metric

would indicate 2 level 5 managers, whereby our individual

metric would count 4 contributors. The metrics are called

manager3, manager4 and manager5. Analogue to other

directory metrics, we use the average number of managers

associated to code file changes in that directory. We will refer to

these metrics as manager3dir, manager4dir, and manager5dir.

V. RESULTS

In this section, we present the results of our experiments

described in Section III.

A. Descriptive Statistics

This section details some of the ownership statistics we could

observe among the four projects and their releases. The actual

values can be found in TABLE II. In general, we see that most

TABLE I. OWNERSHIP MEASUREMENTS USED IN THIS STUDY.

Metric name Description
Individual Ownership for Files

ownership Proportion of commits for the highest
contributor.

minors No. of contributor with ownership of less than
50%.

minimals No. of contributors with ownership of less than
20%.

contributors No. of contributors.
Individual Ownership for Directories

avgownership AVG ownership values for all files in that
directory: (sum of file ownership) / (#files).

ownershipdir Pct. of commits of the highest contributor
considering all files in a directory: (sum of all
commits of main contributor) / (#all commits)

minownerdir Pct. of commits of the lowest contributor
considering all files in a directory:
(sum of all commits of the lowest contributor)/(#all commits)

avgcontributors AVG of distinct contributors among all files in a
directory: (sum of distinct contributors per
directory)/(#files)

pcminors Pct. of contributors among all contributors with
less than 50% commits among all files in a
directory: (sum of distinct minors)/(#contributors)

pcminimals

Pct. of contributors among all contributors with
less than 20% commits among all files in a
directory: (sum of distinct minimals)/(#contributors)

pcmajors Pct. of contributors among all contributors with
more than or 50% commits among all files in a
directory: (sum of distinct contributors with more than
50% changes)/(#contributors)

avgminimals AVG minimals in a directory: (sum of minimals per
file/#files)

avgminors AVG minors in a directory: (sum of minors per
file/#files)

minownedfile The ownership value of the file with the lowest
ownership value.

weakowneds No. of files in a directory that have an ownership
value of less than 50%: (num of files with < 50%
ownership)/#files

Organizational Ownership for Files

manager3 or
manager4 or
manager5

No. of distinct managers contributors of a file
have on level 3, or level 4 or level 5 counted from
the distance to the CEO.

Organizational Ownership for Directories

manager3dir or
manager4dir or
manager5dir

AVG no. of distinct managers contributors of all
files in a directory have on level 3, or level 4 or
level 5 counted from the distance to the CEO:
(sum of distinct managers per file/#files)

of the files have only one or two contributors in a given release,

across all investigated products. Only 10% of files have more

than 2 or 3 contributors. We also see that for the Office product

family (OF15, OF16, and the service product O365) the average

ownership is stronger than for Exchange and Windows. For the

Office product family, almost 75% of all files are completely

owned by one main contributor (i.e., almost 100% of the

commits come from one contributor). For Windows and both

Exchange releases, we see that at least 10% of all files are

modified by 3 or more minor contributors.

For directories, we see that most directories only contain a

very small number of files that churn in a given release. For

OF15, OF16, Ex13, and Ex15 the median number of files is 2.

For Win the median is 3, while O365 has a median of 6 files per

directory. Even on a directory level, we can see a strong sense of

ownership: the majority of directories is completely owned by

one person. Ex13 is the exception for which the main

contributors have an ownership of 77% for more for 50% of the

directories. Even for the percentage of edits coming from the

owner with the smallest number of edits (minowner) the relative

number of edits is quite high. Only for the 25% percentile of the

files, the minowner contributes less than 25%, whereby we see

the smallest contributions for Ex13. For OF15 and OF16, the

minowner makes up to 50% of the edits in the 25% percentile.

Overall, we can observe a strong sense of ownership among all

products and for both granularity levels. Surprisingly, the

majority of files and the majority of the directories have only one

main contributor that does almost all (77-100%) of the commits.

B. Correlations

To show basic relationship between code ownership and

code quality, we computed spearman rank correlations between

ownership metrics and our code quality measures both described

in Section III.D. TABLE III. contains the metric correlation

values on source file level. For all products, the metric

ownership is negatively correlated with the number of bugs.

Thus, the more shared the file ownership the higher the

likelihood that it will contain code defects. This trend is also

supported by the fact that for all projects, the number of

contributors and the number of minor and minimal contributors

is positively correlated with the number of bugs—the more

people contribute to a file’s content, the higher the risk of bugs.

Organizational ownership metrics on the other hand seem to

behave differently for different projects, but are also only weakly

correlated with the number of fixed bugs. Nevertheless, it seems

that the individual trends of relationships between ownership

measurements and the number of bugs are similar for all

products, even for the ranking of correlation values. The number

of minor or minimal contributors is for almost all products the

measurement with the highest correlation value, followed by

contributors and ownership. As discussed in Section IV, we

defined two sets of files: one that contains all files, and one that

contains only files that have at least been edited twice. We could

not observe a strong difference in terms of correlation values for

the two metric sets, as shown in TABLE III.

Correlation values between directory based ownership

measures and the corresponding number of bugs fixed per

directory are shown in TABLE IV. Similar to correlation values

on file level, individual ownership metrics correlate stronger

than organizational metrics. Moreover, the percentage of minor,

minimal or major contributors among all contributors, and

percentage of edits of the minimal contributor, have the strongest

correlations (pcminors, pcminimal, pcmajors, minownerdir).

Whereby, the number of bugs in a directory increases when the

percentage of minor or minimal contributors increases, and the

TABLE II. DESCRIPTIVE STATISTICS OF OWNERSHIP METRICS. M REFERS TO THE

MEDIAN, 10% TO THE HIGHEST VALUE FOR THE LOWEST 10% OF THE DATA, 90% FOR

THE HIGHEST VALUE FOR 90% OF THE DATA, Q1 FOR THE FIRST AND Q3 FOR THE THIRD

QUANTILE.

Description of measurement OF15 OF16 Ex13 Ex15 O365 Win

On File Level

No. of contributors
per file

Q3
90%

1
2

1
2

2
4

2
3

2
3

2
3

% ownership of main
contributor

10%
Q1

.5
1

.5
1

.41

.53
.43
.67

.5
.81

.46
.5

No. minors Q3
90%

0
1

0
1

1
3

0
3

0
2

0
3

On Directory Level

No. of files in a
directory

Q1
M

Q3

1
2
5

1
2
6

1
2
6

1
2
5

3
6

11

1
3
7

% ownership of main
contributor

Q1
M

.71
1

.89
1

.5
.77

.5
1

.5
1

.67
1

% ownership of min
contributor

Q1
M

.5
1

.5
1

.09
.4

.24
1

.29
1

.23
1

% of minors per
directory

Q3
90%

0
0.90

0
0.67

.89
1

.67
1

.5
1

0
.6

TABLE III. SPEARMAN CORRELATION BETWEEN OWNERSHIP METRICS AND BUG

NUMBERS ON FILE LEVEL FOR FILES WITH CHANGES ≥1 AND ≥2.

Metric OF15 OF16 Ex13 Ex15 O365 Win

 ≥1 ≥2 ≥1 ≥2 ≥1 ≥2 ≥1 ≥2 ≥1 ≥2 ≥1 ≥2

ownership -.30 -.23 -.26 -.27 -.37 -.36 -.32 -.14 -.48 -.42 -.25 -.25

minors .34 .35 .26 .29 .41 .42 .33 .26 .50 .46 .34 .36

minimals .30 .32 .33 .39 .38 .39 .31 .32 .42 .37 .36 .38

contributors .31 .31 .27 .32 .40 .42 .34 .25 .49 .47 .29 .33

manager3 -.04 -.04 -.10 .16 .27 .27 .13 .03 .29 .35 .20 .24

manager4 .15 .13 -.09 .15 .27 .28 .10 .01 .29 .35 .15 .19

manager5 .15 .13 .12 .17 .27 .29 .19 .02 .31 .36 .22 .25

TABLE IV. SPEARMAN CORRELATION BETWEEN OWNERSHIP METRICS AND

BUG NUMBERS ON DIRECTORY LEVEL.

Metric OF15 OF16 Ex13 Ex15 O365 Win

avgcontributors .16 .16 .17 .16 .25 .08
avgownership -.48 -.52 -.53 -.46 -.68 -.47
ownershipdir -.50 -.54 -.53 -.48 -.65 -.42
minownerdir -.52 -.57 -.59 -.56 -.68 -.53
avgminor .51 .52 .52 .45 .69 .51
avgminimals .43 .45 .53 .47 .65 .53
pcminors .55 .58 .56 .51 .69 .55
pcminimals .51 .57 .55 .56 .69 .59
pcmajors -.55 -.58 -.56 -.51 -.69 -.56
minownedfile -.49 -.55 -.55 -.48 -.67 -.49
weakowneds .44 .47 .49 .35 .61 .50
manager3dir -.02 .13 .33 .17 .35 .27
manager4dir .20 .15 .34 .14 .38 .20
manager5dir .22 .19 .33 .24 .40 .31

number of bugs decreases if more major contributors are among

the contributors of a directory. Those metrics are followed by the

minowedfile, ownershipdir, avgownership and weakowned

metrics. The lower the ownership for the file with the lowest

ownership value (minonwedfile) in a directory, the higher the

number of bugs. Interestingly, the percentage of edits of the one

strongest owner per directory (ownershipdir) correlates slightly

better with the number of bugs, than the average number for

ownership per file (avgownership). Also, the higher the

percentage of weakly owned files in a directory (weakowneds)

the higher the number of bugs.

C. Bug Prediction

Some of the ownership correlations discussed in the last

section indicate a connection between code ownership on file

and directory level and the number of defects fixed in these code

entities. However, correlation values have only limited

informative value of whether our ownership metrics can be used

to build accurate and actionable classification models to identify

defective code entities solely based on ownership information.

Note, the goal of this paper is not so much to build the best

possible defect prediction model, but rather to assess the

suitability of ownership metrics to identify defective code

entities on different, actionable levels of granularity. The

classification model presented in this paper classifies source files

and source directories that contained at least one code defect

using ownership metrics only.

Classification Performance

TABLE V. shows details on precision, recall, and f-measure

for classifying defective source files and directories. As

described in Section III.D, we report average values of 10-cross

fold experiments. When classifying code directories, metrics

avgminimals and avgownership have been removed as they

inter-correlated strongly with other metrics and did not provide

any new information value for the classification model.

For the file level classification, we achieve a precision

between 0.69 and 0.79 for all files, including single edit files.

Classification models ignoring these single edit files show

similar precision (between 0.70 and 0.76) However, ignoring

single edit files, slightly increases recall values: from [0.21,0.53]

to [0.30,0.58]. For the directory level, we see precision values

between 0.75 and 0.85 and recall values between 0.53 and 0.79.

In general, we think those prediction results are showing that

ownership can play an important factor in terms of code quality.

The low recall values on the other hand clearly show that, as

suspected, a lack of ownership cannot explain all defects in the

systems. However, to use recommendation systems in real world

scenarios, a high precision should be preferred over recall.

Reporting a high number of false positives would lead to

engineers not trusting the recommendation tool and thus

ignoring the results in the first place.

To ensure that these classification performance measures

stem from ownership metrics rather than churn metrics, we built

a baseline model that is solely based on the number of edit per

code entity and trained using a random forest (same as

ownership models). The performance values for the baseline

model are shown in brackets in TABLE V. The baseline model

performs significantly worse than the ownership models. Thus,

we can conclude that the model performances reported in this

paper stem from ownership metrics and not from the correlation

between ownership and churn metrics.

Metrics Importance

The metric importance scores on file level are given in

TABLE IV. The metric importance scores among all products

shows that the number of contributors per file is the strongest

indicator for defective files. The second most important metric

is the percentage of changes that were applied by the main

contributor, i.e., ownership. The only exception is Windows

where the metric is on rank 3, after the number of minor

contributors. Interestingly, minors is the least important to

predict defective files for OF15, OF16, and Ex15. The number

of minimal contributors is one of the least predictive, ranking last

or one but last for all projects except for OF16. On file level, we

see that organizational metrics seem more important than some

individual ownership metrics. Metrics importance measures for

files with at least two edits yield similar results. We omit details

due to space restrictions.

Looking at the results for metrics importance on directory

level in TABLE VII. , we see that the percentage of edits of the

lowest contributor of the file is the most important metrics

TABLE V. DETAILS ON PRECISION, RECALL AND F-MEASURE FOR PREDICTING

DEFECTIVE SOURCE FILES AND DIRECTORIES. VALUES IN BRACKETS BELONG TO A

BASELINE MODEL ONLY BASED ON THE NUMBER OF EDITS PER CODE ENTITY.

 Precision Recall F-Measure

Directory level
OF16 0.77 (0.19) 0.56 (0.04) 0.65 (0.07)

OF15 0.75 (0.19) 0.53 (0.03) 0.62 (0.04)
Ex13 0.75 (0.19) 0.61 (0.27) 0.67 (0.22)

Ex15 0.78 (0.19) 0.60 (0.18) 0.68 (0.19)
O365 0.85 (0.19) 0.71 (0.16) 0.77 (0.18)

Win 0.75 (0.19) 0.59 (0.07) 0.66 (0.10)
File level for files with edits ≥1

OF16 0.75 0.21 0.33
OF15 0.69 0.21 0.32

Ex13 0.71 0.31 0.43
Ex15 0.74 0.35 0.47
O365 0.79 0.53 0.63

Win 0.70 0.26 0.38
File level for files with edits ≥2

OF16 0.76 (0.19) 0.31 (0.03) 0.45 (0.05)
OF15 0.70 (0.19) 0.37 (0.06) 0.49 (0.09)

Ex13 0.73 (0.19) 0.38 (0.12) 0.50 (0.15)
Ex15 0.75 (0.19) 0.47 (0.23) 0.58 (0.21)

O365 0.76 (0.19) 0.58 (0.16) 0.66 (0.18)
Win 0.71 (0.19) 0.30 (0.03) 0.42 (0.05)

TABLE VI. METRIC IMPORTANCE FOR PREDICTION MODELS BASED ON

OWNERSHIP METRICS CLASSIFYING DEFECTIVE SOURCE FILES.

 OF16 OF15 Ex13 Ex15 OF365 Win

ownership 0.68 0.69 0.73 0.67 0.85 0.74
minors 0.35 0.33 0.73 0.34 0.82 0.76

minimals 0.41 0.41 0.35 0.42 0.30 0.33
contributors 0.69 0.70 0.75 0.69 0.85 0.77

manager3 0.41 0.54 0.34 0.42 0.76 0.71
manager4 0.42 0.61 0.68 0.44 0.76 0.65
manager5 0.38 0.62 0.69 0.63 0.78 0.71

among all products (minownerdir). This metric is followed by

the percentage of minor (pcminors) and major (pcmajors)

contributors in a directory. After that, there is a variance among

the metrics performance and the products. Nevertheless, we see

that organizational metrics once again perform among the

poorest.

D. Interviews: Weak Ownership

Files that miss a strong owner, i.e., weakly owned files, are

not equally distributed throughout the code based – they cluster

in few places in the source code base. In fact, 90% of the

directories have no weakly owned files. On the other hand, a few

directories comprise a large portion of weakly owned files.

Weakly owed files have on average 6 times more bugs assigned

as files that have a strong owner.

To understand why certain files are weakly owned, and why

they cluster in certain directories we used interviews. When we

interviewed the engineers, often it was obvious and expected to

them that certain files, or files in a certain directory are weakly

owned. Those files and directories often can be described to

follow a “collective” ownership model. On the other hand,

engineers also quickly identified files per name that surprised

them to be changed by several engineers.

In Office, strong ownership of code is discouraged.

Engineers are working on many different files, whereby they

ensure that an area expert is always informed and approves the

changes, e.g., by using code review techniques.

There are several reasons why weak ownership occurs. Some

of those are because ownership is currently transferred from one

person to another or from one team to another. Another can be

ongoing refactoring which is performed by another team than

the original team that contributed the code, or because of bug

fixing. Also, crosscutting concerns or architectural smells can be

a reason why several teams have to edit and work on artifacts

together.

Not always is the weak ownership expected. With Office, we

could see that there are two types of weak ownerships:

intentional weak ownership, which was due to the

aforementioned reasons, and unintentional ownership.

Engineers were not worried about the intentional weak

ownership – which might be a form of collaborative ownership,

but they were concerned about the unintentional weak

ownership for files and directories that they were not expecting

that different sets of engineers work on them at the same time.

We assume that this might be a form of non-ownership

Similar to the distinction engineers made between files and

directories they knew to be weakly owned and the ones they

have not been aware of, they also reacted differently to the idea

of changing the ownership model. For the files and folders that

seem intentionally weakly owned, engineers most of the time did

not see the need to change the ownership model. Exceptions

were when the weak ownership was due to architectural smells.

Here engineers mostly agreed that changes should be made in

order to limit the need of several engineers to change the same

artifacts. On the other hand, for the artifacts that surprised them,

engineers wanted to gather more information why this is

happening and then based on that knowledge potentially

intervene and act.

VI. DISCUSSION

A. Reflection on Results and Previous Studies.

In this study, we showed that the majority or source code

files and directories are strongly owned, supporting the findings

of LaToza [11] who showed that at Microsoft there is a strong

sense of personal code ownership (72%) and an even stronger

sense of team code ownership (92%).

Bird et al. showed that defects correlate with ownership for

Windows binaries. In our study, we wanted to know whether

such correlations hold for other systems, apart from Windows

(see RQ1 in Section III.A). This is especially important as

Foucault et al. [2] showed that the results could not be

reproduced for all of the open source systems they investigated.

In our study, we investigated four different software systems,

i.e., Office, Exchange, Office365 and Windows, and conclude

that we could observe that ownership metrics correlated with

defects, and that we even could use such metrics to build

performant bug prediction models.

In this replication study, we also changed the granularity

level of a software component from a binary level to source file

and directory level. In contrast to the results of Foucault et al. [2]

we could see correlations between ownership metrics on source

file and directory level (see RQ2). Similar to their findings, did

the more coarse-grain directory level metrics perform better than

the metrics defined on file level. On the other hand, as our data

revealed most of the directories only contain a very small

number of files (an average median of 3 files). It is important to

remember that many studies showed that defects tend to

correlate with size. Therefore, we were particular careful to

normalize our metrics with respect to the size of a directory.

 Our observed correlation values on file level are on average

0.39 and 0.57 on directory level. The authors in [2] hypothesize

that only a correlation value above 0.5 indicates a strong

correlation. The interpretation of correlation values is much

more complex than that and depends also on the sample size and

the significance of the observation. Our sample size was very

large on file as well as on directory level, and all spearman

correlation showed a very low p value (below 0.01), indicating

that the correlations we see are very unlikely to occur due to

TABLE VII. METRIC IMPORTANCE FOR PREDICTION MODELS BASED ON

OWNERSHIP METRICS CLASSIFYING DEFECTIVE SOURCE DIRECTORIES.

metrics Win OF16 OF15 Ex13 Ex15 O365

avgcontributor .57 .61 .39 .40 .41 .67
avgownership .80 .77 .75 .79 .73 .87
ownershipdir .77 .79 .77 .79 .74 .86
minownerdir .84 .81 .78 .82 .78 .88

avgminors .79 .73 .73 .77 .70 .86
avgminimals .30 .37 .37 .72 .36 .77

pcminors .82 .79 .77 .80 .74 .87
pcminimal .78 .27 .30 .78 .28 .83
pcmajors .82 .79 .77 .80 .74 .87

minownedfile .81 .78 .75 .79 .73 .87
weakowned .73 .35 .37 .70 .38 .75
manager3dir .68 .42 .52 .67 .40 .73
manager4dir .63 .60 .63 .69 .58 .74
manager5dir .71 .62 .65 .69 .63 .75

chance. Judging the effect size based on Cohen’s terms [12], we

saw medium to strong effects for the correlation observed even

on file level. From that perspective, we conclude that we could

observe significant correlations between defects and ownership

metrics for all products, and for both granularity levels. In

addition, we could observe rather good performances in terms of

predicting defective source code files and directories (RQ3).

During the interviews and interaction with the product teams,

we identified several reasons for a lack of ownership, namely

transfer of ownership, bug fixing, refactoring, and architectural

issues or smells (RQ4). In addition, we observed three groups of

ownership: first, the individual ownership, where one engineer

is mainly performing changes to and responsible for a code

artifact; second collective ownership, where a group of people

all together are changing and are responsible and for code

artifacts; and finally non-ownership where a lack of

accountability and responsibility is observable.

Even though beyond the scope of this paper, we think

organizational metrics for example reflecting the number of

managers involved can help to separate files that are not owned

from files that are collectively owned. We saw that the number

of level 3 managers for collective owned files is significantly

higher than for files that are not owned. We think further

investigation of this phenomena and refinement of the

organizational metrics is needed.

B. Recommendations.

In this section, we summarize the lessons learned during this

study by formulating several recommendations targeted at

development teams.

1. Do not enforce a strong ownership model without

understanding the impact.

In this study, we showed that weak ownership has an impact

on code quality. On the other hand, from the interviews we

understand that weak ownership is not always unintended.

Simply enforcing a very strong ownership model might not be

the right solution, as ownership not only has implications on

responsibility and accountability, but also on knowledge and

dependencies. For example, if several engineers edit one file, it

might be problematic because accountability can be unclear. On

the other hand, strong ownership prohibits knowledge transfer.

Not being familiar with a certain piece of code is a serious

problems and building a mental model about software a tedious

task [11]. Also in [13] Mockus showed that it is hard for

developers to understand the code of others, and that “developers

go to great lengths to create and maintain rich mental models of

code that are rarely permanently recorded.” This directly

impacts the ability of a developer to contribute to source code

that she has not contributed before.

2. Review weakly owned files and directories to

understand the mechanisms and dynamics at play (i.e.,

collaborative ownership or non-ownership).

An interesting differentiation of type of ownership is done

by Martin Nordberg [14]. He makes clear that there is a

difference between “collaborative” ownership and “non-

ownership”. He defines collaborative ownership, as an

ownership where code is collectively owned, but responsibilities

and schedules are clear. Each team member can work across

subsystems as needed. If implemented right, this style helps to

build and maintain knowledge about the code among team

members and one might expect the quality of such systems to be

high. On the other hand, he describes non-ownership as a mode

in which several developers make changes to the same system

but with minimal accountability for quality or team

communication. In such systems, one might expect the quality

to be low. During the interviews, engineers explained a similar

kind of differentiation between one group of weakly owned files

and directories and the other. Engineers seem more worried

about the unintended or unknown weakly owned artifacts which

seem to correspond to the non-ownership category, and

expressed the need to further investigate.

3. As much as possible assign an owner to currently

weakly owned files and directories with unclear

accountability.

We recommend that teams pay attention to ownership of files

and directories, and especially to those artifacts that are not

intentionally weakly owed, and where the reason for a lack of

ownership is unclear. Assigning an owner might not imply that

this is the only person that is allowed to change the artifact, but

that this person is aware of changes to the artifact for example

via code reviewing practices. If the reason for the weak

ownership are architectural smell (i.e., cross cutting concerns,

god classes etc.) the team should consider refactoring to split

weakly owned files into more coherent units.

4. If driving changes to the ownership model is not

possible or desired, use ownership information as

indicator of risk.

For artifacts, where strong ownership is practically not possible

to ensure or not desired we highly recommend that changes to

such weakly owned files and directories are carefully reviewed.

Also, we recommend to use ownership information to drive test

efforts.

C. Importance of Replication Studies.

Especially in software engineering, replication studies are

limited available and published. Yet, they are crucial to ensure

progress in scientific community. Generalizability is often one

of the main threats to validity of research studies. As Foucault et

al. [2] show in their replication study, the ownership measures

do not correlate with all systems under study. On the other hand,

we could clearly show that the results generalize beyond the

Windows as a subject system.

D. Threats to Validity

Like other empirical studies, ours too has threats to validity.

Not all files touched in bug fixing commit must be

necessarily related to the actual fix. Engineers may entangle

multiple atomic changes into bigger blobs mixing code changes

of different nature, such as fixed and refactorings. Tangled

changes may lead to data noise and bias [15, 16].

Using CodeMine [8] as data mining tool to create our data

sets, we naturally inherit all threats to validity of CodeMine, this

implies likely noise with respect to mapping bug reports to code

changes and associations between developers and organizational

structure. On the other hand, CodeMine is widely used by

practitioners and researchers within Microsoft and data quality

is constantly monitored and improved.

In this study, we investigated products using development

processes that may contain Microsoft specific elements. The set

of products includes products using different processes and

having different product objectives. However, all investigated

products are Microsoft products. We do not claim our results to

be general, supported by the contradicting results reported in [2].

Instead of using one product and relying on one evaluation

method (i.e., statistical or interviews) we used triangulation and

used four different products and two complementary evaluation

techniques to reduces the potential systematic bias that can occur

with using only one data source, method, or procedure [17].

VII. RELATED WORK

A. Ownership and Organizational Structure

This paper builds upon work of Bird et al. [1] who discuss

the impact ownership on software defects of major software

products, i.e., Windows Vista and Windows 7. In their study,

especially the effect of changes coming from low expertise

developers is examined, and reasons for their contributions are

revealed. The authors show that the removal of low-expertise

contributions can increase the quality of the software system.

Foucault et al. [2] replicated the original study on open source

software systems (FLOSS), and found that the findings do not

generalize to their open source software under study. In

particular, the authors could only find strong correlation between

ownership metrics and faults for half of the systems. The authors

further investigated this phenomena and come to the conclusion

that this is due to the nature of how contributions are distributed

in FLOSS projects and also due to the presents of very strong

contributors (so called “heroes”).

In [18] Posnett et al. reflect on the composition of software

systems, and question whether and how the granularity level of

software components chosen for investigation impact the

outcome of the study results. This concern is truly a valid one,

and a key motivator for us to replicate previous studies on

ownership on different granularity levels.

Rahman and Devanbu [6] examined the effects of ownership

on an even more fine-granular level, the level of contributions to

code fragments. The study however uses different ownership

measures and focuses purely on open source software systems.

Weyuker et al. [19] focused on the effects the number of

contributors have on defect prediction models. The authors

found only moderate improvements of fault prediction models

that included the cumulative number of developers as prediction

factor. Whereby we also use the number of contributors as one

factor, we consider a much broader set of ownership metrics.

Also, our focus is not to provide a defect prediction model per

se, but to show that ownership metrics not only correlate but also

can be used to classify defective artifacts.

Meneely et al. [7] studied the effects of the number of

contributors on security vulnerabilities focusing on the Linux

software system. In contrast to Weyuker et al. [19], the authors

showed that a higher number of developers significantly

increases the risk of the file to yield a security vulnerability. Files

changed by more than 9 developers showed a 16 times higher

risk to comprise a security defect.

Herzig and Nagappan [5] examined the impact of

organizational structure on test reliability and test effectiveness.

In contrast to this study, their study focused on owners of test

cases instead of production code and developers.

B. Predicting and Classifying Defect Prone Artifacts

The number of related studies on defect prediction models is

large. For the sake of brevity, we only refer to the most relevant

related studies in this section. The first studies on predicting

defects using code metrics emerged in the 1990s. In 1999,

Fenton and Neil [20] provided a comprehensive overview of

defect prediction models at that time. In recent years, more

reviews on defect prediction models are emerging, e.g. [21, 22].

These reviews show the wide variety of aspects and

measurements used for defect prediction purposes. Ostrand et al.

[23] used code metrics and prior faults to predict the number of

faults. Other studies used change-related metrics [24, 25],

developer related metrics [26], organizational metrics [4],

process metrics [27], change dependency metrics [28, 29], or test

metrics [30, 31] to build defect prediction models, on various

software systems and levels of granularity. As previously

mentioned, our study does not focus on building a prediction

model per se, but focuses on showing a relationship between

ownership metrics and code defects.

VIII. CONCLUSIONS

In this paper, we replicated and enhanced a study of Bird et

al. that looked at the effects ownership has on code quality by

measuring the presents of defects. In this study, we extended the

previous metrics to be usable on a source file and directory level,

thus leading to much more actionable insights. We could show

that low ownership metrics correlate with the number of bugs

that are fixed either on file, or on directory level. Further, we

showed that we can build quite reliable prediction models that

can classify files and directories in defective and non-defective

entities with an average recall of 0.60 and an average precision

of 0.76 for directory level.

As future work, we will use action research to investigate the

actions implemented by product teams as a result of this study

and also to understand the effects caused by changes to the

current ownership model. We plan to do that again by using a

combination of data-driven analytics, and close collaboration

with product teams.

IX. ACKNOWLEDGMENTS

We thank all product teams for their help and feedback.

Special thanks goes out to Carlo Rivera, Alex Gorischek and

many others from the Office product team for their active and

engaged collaboration. This work is based on data extracted

from varies development repositories by the CodeMine.

X. REFERENCES

[1] C. Bird, N. Nagappan, B. Murphy, H. Gall and P. Devanbu,

"Don'T Touch My Code!: Examining the Effects of Ownership

on Software Quality," in Proceedings of the 19th ACM

SIGSOFT Symposium and the 13th European Conference on

Foundations of Software Engineering, 2011.

[2] M. Foucault, J.-R. Falleri and X. Blanc, "Code ownership in

open-source software," in Proceedings of the 18th International

Conference on Evaluation and Assessment in Software

Engineering, New York, 2014.

[3] C. Bird, N. Nagappan, P. Devanbu, H. Gall and B. Murphy,

"Does Distributed Development Affect Software Quality? An

Empirical Case Study of Windows Vista," in Proceedings of the

31st International Conference on Software Engineering, 2009.

[4] N. Nagappan, B. Murphy and V. Basili, "The Influence of

Organizational Structure on Software Quality: An Empirical

Case Study," in Proceedings of the 30th International

Conference on Software Engineering, 2008.

[5] K. Herzig and N. Nagappan, "The Impact of Test Ownership and

Team Structure on the Reliability and Effectiveness of Quality

Test Runs," in Proceedings of the 8th ACM/IEEE International

Symposium on Empirical Software Engineering and

Measurement, 2014.

[6] F. Rahman and P. Devanbu, "Ownership, Experience and

Defects: A Fine-grained Study of Authorship," in Proceedings

of the 33rd International Conference on Software Engineering,

2011.

[7] A. Meneely and L. Williams, "Secure Open Source

Collaboration: An Empirical Study of Linus' Law," in

Proceedings of the 16th ACM Conference on Computer and

Communications Security, 2009.

[8] J. Czerwonka, N. Nagappa, W. Schulte and B. Murphy,

"CODEMINE: Building a Software Development Data

Analytics Platform for Microsoft," IEEE Software, pp. 64-71,

2013.

[9] L. Breiman, "Random Forests," Machine Learning, vol. 45, pp.

5-32.

[10] M. Kuhn, "caret: Classification and Regression Training," 2011.

[11] T. D. LaToza, G. Venolia and R. DeLine, "Maintaining mental

models: a study of developer work habits," in International

Conference on Software engineering , New York, 2006.

[12] J. Cohen, P. Cohen, S. West and L. Aiken, Applied Multiple

Regression/Correlation Analysis for the Behavioral Sciences,

Routledge, 2002.

[13] A. Mockus, "Succession: Measuring transfer of code and

developer productivity," in Proceedings of the 31st International

Conference on Software Engineering, Vancouver, 2009.

[14] M. E. Nordberg III, "Managing Code Ownership," IEEE Softw.,

pp. 26-33 , 2003.

[15] D. Kawrykow and M. P. Robillard, "Non-essential Changes in

Version Histories," in Proceedings of the 33rd International

Conference on Software Engineering, 2011.

[16] K. Herzig and A. Zeller, "The Impact of Tangled Code

Changes," in Proceedings of the 10th Working Conference on

Mining Software Repositories, 2013.

[17] J. Maxwell, "The value of a realist understanding of causality for

qualitative research," in Qualitative inquiry and the politics of

evidence, Walnut Creek, Left Coast Press, 2008, pp. 163-181.

[18] D. Posnett, V. Filkov and P. Devanbu, "Ecological inference in

empirical software engineering," in Proceedings of the 2011

26th IEEE/ACM International Conference on Automated

Software Engineering, Washington, DC, USA, 2011.

[19] E. Weyuker, T. Ostrand and R. Bell, "Do too many cooks spoil

the broth? Using the number of developers to enhance defect

prediction models," Empirical Software Engineering, vol. 13,

no. 5, pp. 539-559, 2008.

[20] N. Fenton and M. Neil, "A critique of software defect prediction

models," Software Engineering, IEEE Transactions on, vol. 25,

pp. 675-689, Sep 1999.

[21] C. Catal and B. Diri, "Review: A Systematic Review of Software

Fault Prediction Studies," Expert Syst. Appl., vol. 36, pp. 7346--

7354, may 2009.

[22] D. Radjenoviç, M. Heričko, R. Torkar and A. Živkovič,

"Software fault prediction metrics: A systematic literature

review," Information and Software Technology, vol. 55, pp.

1397--1418, 2013.

[23] T. J. Ostrand, E. J. Weyuker and R. M. Bell, "Where the bugs

are," in Proceedings of the 2004 ACM SIGSOFT international

symposium on Software testing and analysis, 2004.

[24] R. Moser, W. Pedrycz and G. Succi, "A comparative analysis of

the efficiency of change metrics and static code attributes for

defect prediction," in Proceedings of the 30th international

conference on Software engineering, 2008.

[25] E. Shihab, A. Hassan, B. Adams and Z. M. Jiang, "An industrial

study on the risk of software changes," in Proceedings of the

ACM SIGSOFT 20th International Symposium on the

Foundations of Software Engineering, Cary, North Carolina,

2012.

[26] M. Pinzger, N. Nagappan and B. Murphy, "Can developer-

module networks predict failures?," in Proceedings of the 16th

ACM SIGSOFT International Symposium on Foundations of

software engineering, 2008.

[27] A. E. Hassan, "Predicting faults using the complexity of code

changes," in Proceedings of the 31st International Conference

on Software Engineering, 2009.

[28] T. Zimmermann and N. Nagappan, "Predicting defects using

network analysis on dependency graphs," in Proceedings of the

30th international conference on Software engineering, 2008.

[29] K. Herzig, S. Just, A. Rau and A. Zeller, "Predicting Defects

Using Change Genealogies," in Proceedings of the 2013 IEEE

24nd International Symposium on Software Reliability

Engineering, 2013.

[30] N. Nagappan, L. Williams, M. Vouk and J. Osborne, "Early

Estimation of Software Quality Using In-process Testing

Metrics: A Controlled Case Study," SIGSOFT Softw. Eng.

Notes, vol. 30, pp. 1--7, may 2005.

[31] K. Herzig, "Using Pre-Release Test Failures to Build Early Post-

Release Defect Prediction Models," in Proceedings of the 25th

International Symposium on Software Reliability Engineering,

2014.

[32] I. H. Witten and E. Frank, Data Mining: Practical machine

learning tools and techniques, Morgan Kaufmann, 2005.

