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Abstract—In a traditional sense, ownership determines rights 

and duties in regard to an object, for example a property. The 

owner of source code usually refers to the person that invented the 

code. However, larger code artifacts, such as files, are usually 

composed by multiple engineers contributing to the entity over 

time through a series of changes. Frequently, the person with the 

highest contribution, e.g. the most number of code changes, is 

defined as the code owner and takes responsibility for it. Thus, 

code ownership relates to the knowledge engineers have about 

code. Lacking responsibility and knowledge about code can reduce 

code quality. In an earlier study, Bird et al. [1] showed that 

Windows binaries that lacked clear code ownership were more 

likely to be defect prone. However recommendations for large 

artifacts such as binaries are usually not actionable. E.g. changing 

the concept of binaries and refactoring them to ensure strong 

ownership would violate system architecture principles. A recent 

replication study by Foucault et al. [2] on open source software 

replicate the original results and lead to doubts about the general 

concept of ownership impacting code quality. In this paper, we 

replicated and extended the previous two ownership studies [1, 2] 

and reflect on their findings. Further, we define several new 

ownership metrics to investigate the dependency between 

ownership and code quality on file and directory level for 4 major 

Microsoft products. The results confirm the original findings by 

Bird et al. [1] that code ownership correlates with code quality. 

Using new and refined code ownership metrics we were able to 

classify source files that contained at least one bug with a median 

precision of 0.74 and a median recall of 0.38. On directory level, 

we achieve a precision of 0.76 and a recall of 0.60. 

Index Terms— Empirical software engineering, code ownership, 

software quality  

I. INTRODUCTION 

In recent years, a number of studies investigated the impact 

of code ownership and organizational structure on software 

quality and reliability [1, 2, 3, 4, 5, 6, 7]. Code ownership—the 

number of engineers contributing to a source code artifact and 

the relative proportion of their contributions—determines 

collaboration networks among software developers. These 

networks and their underlying organizational structures 

influence the programming behavior of developers and their 

communication channels. As shown by previous studies code 

ownership and organizational structure impacts code quality. 

Code ownership and in particular the lack of ownership is likely 

to cause the lack of responsibility for code parts that an engineer 

does not own. Thus, code without a strong owner might have no 

champion who will take responsibility to maintain and test the 

code. Without such code owners, knowledge about the inner 

working and functionality of code might be limited or may be 

lost completely. 

Bird et al. [1] (henceforth referred to as original study for 

sake of brevity) showed that weakly owned Windows binaries—

binaries where many engineers contribute small amounts of 

code—are more likely to be defect-prone than strongly owned 

Windows binaries, for both Windows Vista and Windows 7. 

Large software products such as Microsoft Windows or 

Microsoft Office are composed of thousands of individual 

executable files (.exe), shared libraries (.dll), and drivers (.sys), 

which are referred to as binaries. While the results presented in 

the original study are convincing, these results for binaries are 

too coarse granular to be actionable for product teams. Binaries 

tend to comprise large numbers of individual code entities and 

are unlikely to be strongly owned by a single or even a few 

developers. However, distributed ownership for binaries does 

not imply that individual lower level code entities, e.g. source 

files, have the same weak ownership. A weakly owned binary 

can contain hundreds of code entities each owned by a single 

engineer. Further, recommendations for binaries are usually not 

actionable. Changing the concept of binaries and splitting 

existing binaries into smaller pieces for the sake of ensuring 

strong ownership would violate system architecture purposes 

and principles.  

To make the results more actionable for engineers, we 

decided to look at two different granularity levels: we use the 

smallest logical and physical entity comprised in a binary, i.e., 

files as unit of investigation. However, bug distributions on file 

level can be very sparse leading to highly unbalanced data sets—

data sets in which the number of source files that contained a 

code defect is very small, e.g. below 1%. The finer the level of 

granularity, the more unbalanced the data sets will become. 

Therefore, we decided to choose an intermediate level of 

granularity that lies between binaries and source files: code 

directories. Directories are logical groupings of files that often 

share some common properties. While we newly investigate the 

file level for Microsoft products, we replicate the study by 

Foucault et al. [2] who investigated open source systems on file 

level granularity previously. We check if results reported by Bird 

et al. [1] are valid for finer levels of granularity and generalize 

beyond Windows and whether results reported by Foucault et al. 

[2] on file level (i.e., no impact on quality) can be confirmed on 

Microsoft products. 



 More specifically, we make the following contributions: 

 We widen the set of Microsoft products under investigation 

to four main Microsoft product: Office, Windows, 

Office365 and Exchange (Section III); 

 We extended and refined the set of ownership metrics as 

defined by Bird et al. [1] in Section IV; 

 We investigated how well the newly refined ownership 

metrics correlate with applied bug fixes on two actionable 

levels of granularity: code directories and source file level 

(Section III and Section V); 

 We show that our ownership metrics can be used to predict 

software bugs with a median precision of 0.76 and a median 

recall of 0.60 on directory level (Section V); 

 We show that the number of contributors and the percentage 

of edits of the lowest contributor seem to be the most 

important code ownership metrics when classifying 

defective code files and code directories (Section V); 

 We provide a set of recommendations for managing 

ownership (Section VI.B). 

II. SUMMARY OF THE ORIGINAL STUDY 

In this section, we give a brief overview of the original study 

design [1], but refer the interested reader to the original study for 

more details. The original study investigated two releases of the 

Windows software system: Windows Vista and Windows 7. For 

both systems, the authors assessed whether their defined 

ownership metrics relate to pre-release and post-release defects.  

In particular, the original study used the following 

terminology and metric definitions, which we closely follow:  

- A contributor has made commits/software changes to 

the software component. 

- A software component as a unit of development that has 

some core functionality. 

- A minor contributor is a contributor who made less than 

a predefined threshold of the changes to a component.  

- A major contributor is a contributor who made more 

than the predefined threshold of changes to a 

component. 

- Ownership is defined as the proportion of commits a 

contributor made to a component relative to the total 

number of commits to that component.  

Based on those definition, the authors define those metrics: 

- Minor: the number of minor contributors 

- Major: the number of major contributors 

- Total: the number of total contributors 

- Ownership: the percentage of changes of the contributor 

with the highest number of changes. 

The authors used spearman rank correlation to check 

whether their ownership measurements relate to the number of 

pre-release and post-release code defects for each release.  

In addition, the authors performed multiple linear regression 

to compare normal software measurements (such as size and 

complexity) with ownership measurements. The authors 

                                                           
1 There exist many differences between box and service products. Most 

importantly, code defects for service products can be fixed within seconds 

conclude that for all binaries the defined ownership metrics have 

a relation to pre- as well as post-release defects.  

III. EXPERIMENTAL SETUP 

This section details our experimental setup. It includes our 

research question, descriptions of our research methodology and 

evaluation, and explains deviations to the original study.  

A. Research Questions 

To understand the impact of ownership measured on source 

file and directory level on code quality, we investigate the 

following research questions: 

RQ1:  Are ownership metrics indicative for code quality for 

other software systems than for Windows?  

RQ2:  For which levels of granularity (directory and source 

file) do ownership metrics correlate with code quality 

measured by the number of fixed bugs? 

RQ3:  Can ownership metrics be used to build classification 

models to identify defective directories and defective source 

files? 

RQ4:  What are the reasons for a lack of ownership? 

B. Study Subjects 

We investigated four major Microsoft products: Office, 

Office365, Exchange, and Windows. 

We chose this set of products for a number of reasons. First, 

the set of products represents products of different nature. While 

Office and Windows are classical box products that are shipped 

to customers, Office365 and Exchange represent service 

products1. Second, each product, even within a group of 

products, was developed using different development 

methodologies and cultures, e.g. different branching structures, 

release cycles, componentization concepts, etc. However, each 

product in itself is a complex system under active development 

with hundreds of engineers and major development efforts for 

each release.  

For each of the investigated products we analyzed one to 

three release cycles, reaching from 3 years for Exchange to 1 

year for Office. For Office, we analyzed two releases Office 15 

(OF15) and Office 16 (OF16). For Exchange we analyzed the 

two major releases Exchange 2013 (Ex13) and Exchange 2015 

(Ex15). Additionally, we analyzed one release of Windows 

(Win) and one release of Office365 (O365).   

Each of these software systems comprises several millions 

lines of code, and during the respective release cycles several 

hundred thousand changes were applied. 

C. Measuring Code Quality 

For this study, we use data provided by a Microsoft internal 

mining tool called CodeMine [8]. CodeMine is a platform that 

comprises mined repository data for all major Microsoft 

products. Among these repositories are version control systems 

and bug databases which allow us to identify file changes from 

by rolling back changes. Defects shipped to customers in box products 

require customer action and tend to be more expensive. 



version control commits and to link these changes to bug reports. 

We measure code quality by counting the number of bug fixes 

that are linked to a code artifact, e.g. a source file. We assume, 

the higher the number of bug fixes, the lower the code quality of 

that artifact. The bug data we use represents all bugs fixed during 

the investigated release cycles (see Section III.B). Thus, bug data 

sets for a release N of a product P contains pre-release bug fixes 

for release N. Some of these bug fixes might be post-release 

fixes for a release N-1 or earlier. CodeMine parses commit 

message (product teams used keyword identifiers to mark bug 

references) of applied code changes to identify bug reports that 

were referenced by the applied code change. The identified bug 

reports are then associated with all files checked-in by this 

commit. For directories, we aggregate the number of distinct 

bugs associated to all source files.  

Independent of the product under study, the majority of files 

have no bug fixes assigned. Only a very low number (less than 

0.02%) of files are outliers with more bugs assigned. Thus, our 

data sets are highly unbalanced and the vast majority of code 

artifacts will be defect free. This is especially true on source file 

level, making it hard for any machine learner to learn from the 

few defect prone instances. This is one of the reasons why we 

are also investigating source directory level where the data sets 

will be less deranged, but still unbalanced.  

D. Statistical Evaluation and Bug prediction 

To understand the relations between our ownership metrics 

and the number of fixed bugs, we investigate correlations 

between the ownership metrics defined in Section IV and code 

quality measures defined in Section III.C. Further, we train and 

test random forest machine learners to build classification 

models to identify files and directories that are associated to at 

least one bug fix. Finally, we use metric importance analysis to 

estimate the predictive power of the different metrics. 

Our definition of code ownership will be based on code 

changes (see Section IV). Artifacts changed only once will be 

strongly owned. These instances are not helpful to establish a 

model using ownership values to decide whether a code artifact 

is defective, we ran two independent sets of experiments. One in 

which we consider all code artifacts and one for which we 

remove code artifacts that were changed only once. All statistical 

experiments were conducted using the R statistical software2. 

Correlations 

Correlation values presented in this paper are—as in the 

original study—Spearman rank correlation values suitable for 

non-normalized data. Correlation values lie between -1 and 1 

and describes how well the dependency between two metrics can 

be described using a monotonic function. A correlation value of 

1 or -1 occurs when one metrics is a perfect monotone function 

of the respectively other measurement. Nearly all code metrics 

highly correlate with size measures; e.g. the higher the number 

of files in source directory, the higher the number of weakly 

owned files. Thus, we normalized metrics by corresponding size 

                                                           
2 http://www.r-project.org/  

measurement. For more details on the size measure used for 

normalization, please see the metrics description in TABLE I.   

All metric correlations have been checked for statistical 

significance by performing a Spearman correlation test and a 

Mann-Whitney U test. All reported values are statistically 

significant showing p-values below 0.01. As for any other study 

that uses statistical models to investigate relational phenomena 

please remember that correlation does not imply causality.  

Classification Models 

Further, we use random forest machine learners3 [9] to train 

and test classification models to identify defective source files 

and directories. Analogue to the original study, classification 

models trained and tested in this study distinguish code artifacts 

that were fixed at least once from those that were not fixed.  

For each product, we split the overall data set of files and 

directories into two subsets. One subset containing two third of 

the original data points for training purposes, the remaining data 

for testing purposes. To split the data into representative 

samples, we used a stratified repeated holdout setup—sampling 

preserves the proportion of positive and negative instances in the 

original data in both training and testing sets. We further remove 

metrics that show correlation values of 0.9 or above to any other 

metrics. Using principal component analysis (PCA) we ensure 

that all feature vectors used to train the classification model are 

orthogonal to each other. Thus, all feature vectors used to train 

the classification models are independent. Each dataset is 

sampled 10 times (10 cross-fold). We report the mean precision, 

recall, and f-measure values.  

Metric Importance 

To estimate the predictive power of individual ownership 

measurements, we used the filterVarImpl function of the caret 

package [10] for R. The function conducts “a series of cutoffs  

[…] to the predictor data to predict the class. The sensitivity and 

specificity are computed for each cutoff and the ROC curve is 

computed. The trapezoidal rule is used to compute the area under 

the ROC curve. This area is used as the measure of variable 

importance” [10]. Please note that these metric importance 

measures may not match the spearman rank correlation results. 

While the rank correlation considers the exact order of all 

entities, classification models simply separate entities into 

categories. The suitability of a metric to solve either problem 

may be different. 

E. Qualitative Evaluation 

We collaborated with engineers from all investigated 

products to ensure that we understand their development 

processes (bug assignments, release cycles, methodologies and 

style of collaboration), which is crucial for a sound data analysis. 

We further choose Microsoft Office as the product we 

engage with to complement our statistical evaluations with 

interviews and close interaction on the research results. Office 

seemed of particular interest for this study as they specifically 

encourage people to move within the organization leading to 

“collective” code ownership. 

3 Random forests are ensembles of decision tree classifiers that grow 

multiple decision trees each voting for the class an instance to be classified. 



With Office, we had several feedback loops over the course 

of 10 month. The close collaboration with product teams 

comprised one-on-one discussions, presentations for several 

different teams, and one-on-one interviews with 6 engineers 

familiar with the source code. Insights gathered during those 

sessions were crucial to understand the different reasons for 

weak code ownership, their implications and the actionable 

countermeasures.  

Participants were chosen based on their knowledge about 

particular files and sub directories in components (such as Excel, 

Word, PowerPoint, etc.), time availability and willingness of 

participation. Most of the engineers interviewed where Software 

Developers or Software Development Leads. Also a Tester and 

a Product Manger have participated in discussions and meetings. 

In addition to the 6 Office team members, 3 more engineers of 

other teams were involved in the discussions. 

IV. MEASURING OWNERSHIP 

There exist multiple ways to measure ownership, especially 

for source code. In our particular case, we were interested in a 

measurement that reflects the notion of responsibility—how 

many engineers are currently contributing to the code and does 

a main contributor exist? The assumption is that main 

contributors show responsibility for their code and act as a 

human quality guard, e.g. reviewing code changes and writing 

tests to ensure high quality. Modifying code that has no such 

guard may risk quality issues.  

Analogue to the original study, we base our ownership 

metrics on check-ins to code repositories, i.e., file changes that 

have been committed to the code repository. We also treat one 

check-in as one change to the files attached—irrespectively of 

the size of the change, i.e., how many line of code have changed. 

Lines of code (churn) is in general a difficult metric as changing 

one line in one file, might represent a much more complex task 

than adding a new method comprising several lines of code. To 

make a change to a file, the engineer has to be knowledgeable 

about the file irrespectively of the number of lines changed. We 

only consider changes to files that comprise source code or 

product configuration information, excluding non-code files 

such as images or build related configurations. Please note that 

we also ignore code changes that apply bug fixes for ownership 

measurements. Bug fixes relate to corrective rather than 

inventive maintenance tasks and thus have only limited value 

when measuring code ownership. Nevertheless, we replicated 

the whole analysis with the complete set of changes. The results 

are very similar to the outcomes reported in this study. No 

significant changes could be observed. 

In the original study, components were large Windows 

binaries. In our study, we deviate in the definition of software 

component, as we will look either at source code files or at 

source directories that contain source code files as a unit of 

development. We group all source files that have the same 

enclosing system path name, e.g. “c:\source\directory\name”, 

into the same group of source files, referred to as directory. 

Please note that this definition is not recursive. Thus, code files 

located in a directory 𝐷𝑙𝑒𝑣𝑒𝑙 𝑛 that is a sub-directory of another 

directory 𝐷𝑙𝑒𝑣𝑒𝑙 𝑛−1 belong only to 𝐷𝑙𝑒𝑣𝑒𝑙 𝑛 but not to 𝐷𝑙𝑒𝑣𝑒𝑙 𝑛−1. 

On file level, we made a differentiation between files that have 

only been edited once in the release, and files that have been 

edited at least twice. We did that because files that have been 

edited by only one engineer can per default be only strongly 

owned. These files will not help us to establish a connection 

between ownership and code quality; in fact, these files may 

influence correlation values. As discussed in Section III.D, we 

ran two separate experiments, one set of experiments includes 

all files and one set ignores files changed only once. As we 

could not easily define a similar exclusion on directory level, 

we calculated correlations, precision and recall for all 

directories, regardless how often files have been edited. 

Because the size of a software component differs from the 

original study, we also deviate from the original percentage of 

the contributions considered for minor and major contributors. 

Originally, the threshold for minor and major contributors was 

set to 5%. A developer that applied more than 5% of all changes 

during the monitored time window was considered a major 

contributor. Source files tend to have much fewer contributors. 

Thus, the percentage of contributions made by one engineer also 

tends to be differently distributed as for large binaries, a fact that 

Foucault et al. [2] ignored in their study leaving the threshold at 

the original 5% as defined by Bird et al. [1]. After analyzing 

distribution values, we set the threshold for minor and major 

contributors to 50%. This means that a contributor that commits 

50% or more of the changes is seen as major contributor, and a 

contributor with less than 50% changes is a minor contributor.  

In addition to the metrics originally defined by Bird et al. [1] 

and briefly discussed in Section II, we added few new ownership 

metrics and also metrics that reflect the organizational structure 

of a team or division, as detailed in the next section.  

A. Metrics 

We divide our metrics in individual and organizational 

ownership metrics for both levels of granularity: source files 

and directories. All metrics are summarized in TABLE I.  

Individual Ownership 

The set of individual ownership metrics addresses the direct 

involvement of engineers by measuring their commits to the 

code base. On file level, we look at the total number of 

contributors, the percentage of commits for the contributor with 

the highest number of commits (ownership), and the number of 

contributors with less than 50% of ownership (minors), and less 

than 20% of ownership (minimals). Those metrics follow very 

closely the originally defined metrics.   

For directory level, we aggregate the originally defined and 

slightly modified metrics, by aggregating file based ownership 

metrics and by normalizing those using appropriate size 

measurements. Note that given our definition of file level 

metrics, those do not need to be normalized as they are based 

entirely on the number of edits and not on the length of the code. 

Details on metric formulas can be found in TABLE I.  

In particular, for directories we look at the average of the 

ownership values (avgownership), the percentage of commits of 

the highest contributor (ownershipdir), and the average number 

of distinct contributors (avgcontributors). Additionally, we 

measure the average number of minor contributors (avgminors), 



the percentage of distinct minor (pcminors), minimal 

(pcminimals), and major (pcmajor) contributors. Apart from 

those direct derived metrics, we also defined additional directory 

specific measures. In the original study, Bird et al. revealed that 

the more minor contributors a binary has the more vulnerable it 

is for defects. We feel that in addition to the original minor 

metrics counting the number of contributors, a more fine-grained 

metric covering the percentage of commits of the lowest 

contributor (minownerdir) might be a good indicator of 

ownership. The smaller the percentage, the more likely this 

contributor has limited expertise in this area and therefore 

                                                           
4 Minownedfile is referencing one file only and therefore does not 

require any size specific normalization. 

introduces more defects. Similar, we use the file with the lowest 

ownership value per directory (minownedfile)4, as we feel this 

value could give additional predictive power in addition to the 

average values. Finally, we measure the percentage of weak 

owned files, i.e., files that do not have a strong contributor 

making more than half of the commits (weakowneds). 

Organizational Ownership 

This metric set abstracts from the individual engineers, and 

looks at organizational structures, i.e., management hierarchies 

to determine ownership. The rationale behind organizational 

structures as code ownership metrics is twofold: First, 

organizational structures not only determine which engineers 

work together, but also influence their programming behavior 

and communication channels and thus also the quality of source 

code. In addition, collective code ownership might decrease the 

ownership of individual engineers per artifact, but a strong 

ownership might still be visible when measured at team level. 

The organizational structure of development teams can be 

represented as an organizational tree. Each node of the tree 

corresponds to a person. Manager nodes have children 

representing persons directly reporting to the manger. We can 

translate the levels in a tree into management levels. The root 

node is the CEO of the company, i.e., manager level zero. 

Managers directly reporting to her are level one managers, etc. 

A more detailed discussion is presented by Nagappan et al. [4].  

For Microsoft, we can infer that managers represent at level 

3 company divisions, at level 4 broader product teams, and at 

level 5 smaller sub teams within product teams. The 

organizational tree allows us to measure how many different 

teams and even divisions contribute to source code files and 

directories. We interpret the organizational tree as a description 

of official communication paths and responsibilities. Two 

engineers reporting to the same manager are likely to have daily 

personal contact compared to engineers having no common 

direct manager. Therefore, we derive the organizational metrics 

by counting all manager at a certain level instead of the 

individual engineers that perform the commits. For example, 

when four engineers commit to a single file, but only three report 

to the same manager on level 5, then our organizational metric 

would indicate 2 level 5 managers, whereby our individual 

metric would count 4 contributors. The metrics are called 

manager3, manager4 and manager5. Analogue to other 

directory metrics, we use the average number of managers 

associated to code file changes in that directory. We will refer to 

these metrics as manager3dir, manager4dir, and manager5dir. 

V. RESULTS 

In this section, we present the results of our experiments 

described in Section III. 

A. Descriptive Statistics 

This section details some of the ownership statistics we could 

observe among the four projects and their releases. The actual 

values can be found in TABLE II. In general, we see that most 

TABLE I.  OWNERSHIP MEASUREMENTS USED IN THIS STUDY. 

Metric name Description 
Individual Ownership for Files 

ownership Proportion of commits for the highest 
contributor. 

minors No. of contributor with ownership of less than 
50%. 

minimals No. of contributors with ownership of less than 
20%.  

contributors No. of contributors. 
Individual Ownership for Directories 

avgownership AVG ownership values for all files in that 
directory:  (sum of file ownership) / (#files). 

ownershipdir  Pct. of commits of the highest contributor 
considering all files in a directory: (sum of all 
commits of main contributor) / (#all commits) 

minownerdir Pct. of commits of the lowest contributor 
considering all files in a directory:  
(sum of all commits of the lowest contributor)/(#all commits) 

avgcontributors AVG of distinct contributors among all files in a 
directory: (sum of distinct contributors per 
directory)/(#files) 

pcminors Pct. of contributors among all contributors with 
less than 50% commits among all files in a 
directory: (sum of distinct minors)/(#contributors) 

pcminimals 
 

Pct. of contributors among all contributors with 
less than 20% commits among all files in a 
directory: (sum of distinct minimals)/(#contributors) 

pcmajors Pct. of contributors among all contributors with 
more than or 50% commits among all files in a 
directory: (sum of distinct contributors with more than 
50% changes)/(#contributors) 

avgminimals AVG minimals in a directory: (sum of minimals per 
file/#files) 

avgminors AVG minors in a directory: (sum of minors per 
file/#files) 

minownedfile The ownership value of the file with the lowest 
ownership value. 

weakowneds No. of files in a directory that have an ownership 
value of less than 50%: (num of files with < 50% 
ownership)/#files 

Organizational Ownership for Files 

manager3 or 
manager4 or 
manager5 

No. of distinct managers contributors of a file 
have on level 3, or level 4 or level 5 counted from 
the distance to the CEO.  

Organizational Ownership for Directories 

manager3dir or 
manager4dir or 
manager5dir 

AVG no. of distinct managers contributors of all 
files in a directory have on level 3, or level 4 or 
level 5 counted from the distance to the CEO: 
(sum of distinct managers per file/#files) 

  



of the files have only one or two contributors in a given release, 

across all investigated products. Only 10% of files have more 

than 2 or 3 contributors. We also see that for the Office product 

family (OF15, OF16, and the service product O365) the average 

ownership is stronger than for Exchange and Windows. For the 

Office product family, almost 75% of all files are completely 

owned by one main contributor (i.e., almost 100% of the 

commits come from one contributor). For Windows and both 

Exchange releases, we see that at least 10% of all files are 

modified by 3 or more minor contributors.  

For directories, we see that most directories only contain a 

very small number of files that churn in a given release. For 

OF15, OF16, Ex13, and Ex15 the median number of files is 2. 

For Win the median is 3, while O365 has a median of 6 files per 

directory. Even on a directory level, we can see a strong sense of 

ownership: the majority of directories is completely owned by 

one person. Ex13 is the exception for which the main 

contributors have an ownership of 77% for more for 50% of the 

directories. Even for the percentage of edits coming from the 

owner with the smallest number of edits (minowner) the relative 

number of edits is quite high. Only for the 25% percentile of the 

files, the minowner contributes less than 25%, whereby we see 

the smallest contributions for Ex13. For OF15 and OF16, the 

minowner makes up to 50% of the edits in the 25% percentile.  

Overall, we can observe a strong sense of ownership among all 

products and for both granularity levels. Surprisingly, the 

majority of files and the majority of the directories have only one 

main contributor that does almost all (77-100%) of the commits.  

B. Correlations 

To show basic relationship between code ownership and 

code quality, we computed spearman rank correlations between 

ownership metrics and our code quality measures both described 

in Section III.D. TABLE III. contains the metric correlation 

values on source file level. For all products, the metric 

ownership is negatively correlated with the number of bugs. 

Thus, the more shared the file ownership the higher the 

likelihood that it will contain code defects. This trend is also 

supported by the fact that for all projects, the number of 

contributors and the number of minor and minimal contributors 

is positively correlated with the number of bugs—the more 

people contribute to a file’s content, the higher the risk of bugs. 

Organizational ownership metrics on the other hand seem to 

behave differently for different projects, but are also only weakly 

correlated with the number of fixed bugs. Nevertheless, it seems 

that the individual trends of relationships between ownership 

measurements and the number of bugs are similar for all 

products, even for the ranking of correlation values. The number 

of minor or minimal contributors is for almost all products the 

measurement with the highest correlation value, followed by 

contributors and ownership. As discussed in Section IV, we 

defined two sets of files: one that contains all files, and one that 

contains only files that have at least been edited twice. We could 

not observe a strong difference in terms of correlation values for 

the two metric sets, as shown in TABLE III.  

Correlation values between directory based ownership 

measures and the corresponding number of bugs fixed per 

directory are shown in TABLE IV. Similar to correlation values 

on file level, individual ownership metrics correlate stronger 

than organizational metrics. Moreover, the percentage of minor, 

minimal or major contributors among all contributors, and 

percentage of edits of the minimal contributor, have the strongest 

correlations (pcminors, pcminimal, pcmajors, minownerdir). 

Whereby, the number of bugs in a directory increases when the 

percentage of minor or minimal contributors increases, and the 

TABLE II.  DESCRIPTIVE STATISTICS OF OWNERSHIP METRICS. M REFERS TO THE 

MEDIAN, 10% TO THE HIGHEST VALUE FOR THE LOWEST 10% OF THE DATA, 90% FOR 

THE HIGHEST VALUE FOR 90% OF THE DATA, Q1 FOR THE FIRST AND Q3 FOR THE THIRD 

QUANTILE.  

Description of measurement OF15 OF16 Ex13 Ex15 O365 Win 

On File Level 

No. of contributors 
per file 

Q3 
90% 

1 
2 

1 
2 

2 
4 

2 
3 

2 
3 

2 
3 

% ownership of main 
contributor 

10% 
Q1 

.5 
1 

.5 
1 

.41 

.53 
.43 
.67 

.5 
.81 

.46 
.5 

No. minors Q3 
90% 

0 
1 

0 
1 

1 
3 

0 
3 

0 
2 

0 
3 

On Directory Level 

No. of files in a 
directory 

Q1 
M 

Q3 

1 
2 
5 

1 
2 
6 

1 
2 
6 

1 
2 
5 

3 
6 

11 

1 
3 
7 

% ownership of main 
contributor 

Q1 
M 

.71 
1 

.89 
1 

.5 
.77 

.5 
1 

.5 
1 

.67 
1 

% ownership of min 
contributor 

Q1 
M 

.5 
1 

.5 
1 

.09 
.4 

.24 
1 

.29 
1 

.23 
1 

% of minors per 
directory 

Q3 
90% 

0 
0.90 

0 
0.67 

.89 
1 

.67 
1 

.5 
1 

0 
.6 

TABLE III.  SPEARMAN CORRELATION BETWEEN OWNERSHIP METRICS AND BUG 

NUMBERS ON FILE LEVEL FOR FILES WITH CHANGES ≥1 AND ≥2. 

Metric OF15 OF16 Ex13 Ex15 O365 Win 

 ≥1 ≥2 ≥1 ≥2 ≥1 ≥2 ≥1 ≥2 ≥1 ≥2 ≥1 ≥2 

ownership -.30 -.23 -.26 -.27 -.37 -.36 -.32 -.14 -.48 -.42 -.25 -.25 

minors .34 .35 .26 .29 .41 .42 .33 .26 .50 .46 .34 .36 

minimals .30 .32 .33 .39 .38 .39 .31 .32 .42 .37 .36 .38 

contributors .31 .31 .27 .32 .40 .42 .34 .25 .49 .47 .29 .33 

manager3 -.04 -.04 -.10 .16 .27 .27 .13 .03 .29 .35 .20 .24 

manager4 .15 .13 -.09 .15 .27 .28 .10 .01 .29 .35 .15 .19 

manager5 .15 .13 .12 .17 .27 .29 .19 .02 .31 .36 .22 .25 

             

TABLE IV.  SPEARMAN CORRELATION BETWEEN OWNERSHIP METRICS AND 

BUG NUMBERS ON DIRECTORY LEVEL. 

Metric OF15 OF16 Ex13 Ex15 O365 Win 

avgcontributors .16 .16 .17 .16 .25 .08 
avgownership -.48 -.52 -.53 -.46 -.68 -.47 
ownershipdir -.50 -.54 -.53 -.48 -.65 -.42 
minownerdir -.52 -.57 -.59 -.56 -.68 -.53 
avgminor .51 .52 .52 .45 .69 .51 
avgminimals .43 .45 .53 .47 .65 .53 
pcminors .55 .58 .56 .51 .69 .55 
pcminimals .51 .57 .55 .56 .69 .59 
pcmajors -.55 -.58 -.56 -.51 -.69 -.56 
minownedfile -.49 -.55 -.55 -.48 -.67 -.49 
weakowneds .44 .47 .49 .35 .61 .50 
manager3dir -.02 .13 .33 .17 .35 .27 
manager4dir .20 .15 .34 .14 .38 .20 
manager5dir .22 .19 .33 .24 .40 .31 

       



number of bugs decreases if more major contributors are among 

the contributors of a directory. Those metrics are followed by the 

minowedfile, ownershipdir, avgownership and weakowned 

metrics. The lower the ownership for the file with the lowest 

ownership value (minonwedfile) in a directory, the higher the 

number of bugs. Interestingly, the percentage of edits of the one 

strongest owner per directory (ownershipdir) correlates slightly 

better with the number of bugs, than the average number for 

ownership per file (avgownership). Also, the higher the 

percentage of weakly owned files in a directory (weakowneds) 

the higher the number of bugs. 

C. Bug Prediction 

Some of the ownership correlations discussed in the last 

section indicate a connection between code ownership on file 

and directory level and the number of defects fixed in these code 

entities. However, correlation values have only limited 

informative value of whether our ownership metrics can be used 

to build accurate and actionable classification models to identify 

defective code entities solely based on ownership information.  

Note, the goal of this paper is not so much to build the best 

possible defect prediction model, but rather to assess the 

suitability of ownership metrics to identify defective code 

entities on different, actionable levels of granularity. The 

classification model presented in this paper classifies source files 

and source directories that contained at least one code defect 

using ownership metrics only. 

Classification Performance 

TABLE V. shows details on precision, recall, and f-measure 

for classifying defective source files and directories. As 

described in Section III.D, we report average values of 10-cross 

fold experiments. When classifying code directories, metrics 

avgminimals and avgownership have been removed as they 

inter-correlated strongly with other metrics and did not provide 

any new information value for the classification model. 

For the file level classification, we achieve a precision 

between 0.69 and 0.79 for all files, including single edit files. 

Classification models ignoring these single edit files show 

similar precision (between 0.70 and 0.76) However, ignoring 

single edit files, slightly increases recall values: from [0.21,0.53]  

to [0.30,0.58]. For the directory level, we see precision values 

between 0.75 and 0.85 and recall values between 0.53 and 0.79. 

In general, we think those prediction results are showing that 

ownership can play an important factor in terms of code quality. 

The low recall values on the other hand clearly show that, as 

suspected, a lack of ownership cannot explain all defects in the 

systems. However, to use recommendation systems in real world 

scenarios, a high precision should be preferred over recall. 

Reporting a high number of false positives would lead to 

engineers not trusting the recommendation tool and thus 

ignoring the results in the first place. 

To ensure that these classification performance measures 

stem from ownership metrics rather than churn metrics, we built 

a baseline model that is solely based on the number of edit per 

code entity and trained using a random forest (same as 

ownership models). The performance values for the baseline 

model are shown in brackets in TABLE V. The baseline model 

performs significantly worse than the ownership models. Thus, 

we can conclude that the model performances reported in this 

paper stem from ownership metrics and not from the correlation 

between ownership and churn metrics. 

Metrics Importance 

The metric importance scores on file level are given in 

TABLE IV. The metric importance scores among all products 

shows that the number of contributors per file is the strongest 

indicator for defective files. The second most important metric 

is the percentage of changes that were applied by the main 

contributor, i.e., ownership. The only exception is Windows 

where the metric is on rank 3, after the number of minor 

contributors. Interestingly, minors is the least important to 

predict defective files for OF15, OF16, and Ex15. The number 

of minimal contributors is one of the least predictive, ranking last 

or one but last for all projects except for OF16. On file level, we 

see that organizational metrics seem more important than some 

individual ownership metrics. Metrics importance measures for 

files with at least two edits yield similar results. We omit details 

due to space restrictions. 

Looking at the results for metrics importance on directory 

level in TABLE VII. , we see that the percentage of edits of the 

lowest contributor of the file is the most important metrics 

TABLE V.  DETAILS ON PRECISION, RECALL AND F-MEASURE FOR PREDICTING 

DEFECTIVE SOURCE FILES AND DIRECTORIES. VALUES IN BRACKETS BELONG TO A 

BASELINE MODEL ONLY BASED ON THE NUMBER OF EDITS PER CODE ENTITY. 

 Precision Recall F-Measure 

Directory level 
OF16 0.77 (0.19) 0.56 (0.04) 0.65 (0.07) 

OF15 0.75 (0.19) 0.53 (0.03) 0.62 (0.04) 
Ex13 0.75 (0.19) 0.61 (0.27) 0.67 (0.22) 

Ex15 0.78 (0.19) 0.60 (0.18) 0.68 (0.19) 
O365 0.85 (0.19) 0.71 (0.16) 0.77 (0.18) 

Win 0.75 (0.19) 0.59 (0.07) 0.66 (0.10) 
File level for files with edits ≥1 

OF16 0.75 0.21 0.33 
OF15 0.69 0.21 0.32 

Ex13 0.71 0.31 0.43 
Ex15 0.74 0.35 0.47 
O365 0.79 0.53 0.63 

Win 0.70 0.26 0.38 
File level for files with edits ≥2 

OF16 0.76 (0.19) 0.31 (0.03) 0.45 (0.05) 
OF15 0.70 (0.19) 0.37 (0.06) 0.49 (0.09) 

Ex13 0.73 (0.19) 0.38 (0.12) 0.50 (0.15) 
Ex15 0.75 (0.19) 0.47 (0.23) 0.58 (0.21) 

O365 0.76 (0.19) 0.58 (0.16) 0.66 (0.18) 
Win 0.71 (0.19) 0.30 (0.03) 0.42 (0.05) 

    
 

TABLE VI.  METRIC IMPORTANCE FOR PREDICTION MODELS BASED ON 

OWNERSHIP METRICS CLASSIFYING DEFECTIVE SOURCE FILES. 

 OF16 OF15 Ex13 Ex15 OF365 Win 

ownership 0.68 0.69 0.73 0.67 0.85 0.74 
minors 0.35 0.33 0.73 0.34 0.82 0.76 

minimals 0.41 0.41 0.35 0.42 0.30 0.33 
contributors 0.69 0.70 0.75 0.69 0.85 0.77 

manager3 0.41 0.54 0.34 0.42 0.76 0.71 
manager4 0.42 0.61 0.68 0.44 0.76 0.65 
manager5 0.38 0.62 0.69 0.63 0.78 0.71 

       
 



among all products (minownerdir). This metric is followed by 

the percentage of minor (pcminors) and major (pcmajors) 

contributors in a directory. After that, there is a variance among 

the metrics performance and the products. Nevertheless, we see 

that organizational metrics once again perform among the 

poorest.  

D. Interviews: Weak Ownership 

Files that miss a strong owner, i.e., weakly owned files, are 

not equally distributed throughout the code based – they cluster 

in few places in the source code base. In fact, 90% of the 

directories have no weakly owned files. On the other hand, a few 

directories comprise a large portion of weakly owned files. 

Weakly owed files have on average 6 times more bugs assigned 

as files that have a strong owner.  

To understand why certain files are weakly owned, and why 

they cluster in certain directories we used interviews. When we 

interviewed the engineers, often it was obvious and expected to 

them that certain files, or files in a certain directory are weakly 

owned. Those files and directories often can be described to 

follow a “collective” ownership model. On the other hand, 

engineers also quickly identified files per name that surprised 

them to be changed by several engineers. 

In Office, strong ownership of code is discouraged. 

Engineers are working on many different files, whereby they 

ensure that an area expert is always informed and approves the 

changes, e.g., by using code review techniques.  

There are several reasons why weak ownership occurs. Some 

of those are because ownership is currently transferred from one 

person to another or from one team to another. Another can be 

ongoing refactoring which is performed by another team than 

the original team that contributed the code, or because of bug 

fixing. Also, crosscutting concerns or architectural smells can be 

a reason why several teams have to edit and work on artifacts 

together.  

Not always is the weak ownership expected. With Office, we 

could see that there are two types of weak ownerships: 

intentional weak ownership, which was due to the 

aforementioned reasons, and unintentional ownership. 

Engineers were not worried about the intentional weak 

ownership – which might be a form of collaborative ownership, 

but they were concerned about the unintentional weak 

ownership for files and directories that they were not expecting 

that different sets of engineers work on them at the same time. 

We assume that this might be a form of non-ownership 

Similar to the distinction engineers made between files and 

directories they knew to be weakly owned and the ones they 

have not been aware of, they also reacted differently to the idea 

of changing the ownership model. For the files and folders that 

seem intentionally weakly owned, engineers most of the time did 

not see the need to change the ownership model. Exceptions 

were when the weak ownership was due to architectural smells. 

Here engineers mostly agreed that changes should be made in 

order to limit the need of several engineers to change the same 

artifacts. On the other hand, for the artifacts that surprised them, 

engineers wanted to gather more information why this is 

happening and then based on that knowledge potentially 

intervene and act. 

VI. DISCUSSION 

A. Reflection on Results and Previous Studies. 

In this study, we showed that the majority or source code 

files and directories are strongly owned, supporting the findings 

of LaToza [11] who showed that at Microsoft there is a strong 

sense of personal code ownership (72%) and an even stronger 

sense of team code ownership (92%). 

Bird et al. showed that defects correlate with ownership for 

Windows binaries. In our study, we wanted to know whether 

such correlations hold for other systems, apart from Windows 

(see RQ1 in Section III.A). This is especially important as 

Foucault et al. [2] showed that the results could not be 

reproduced for all of the open source systems they investigated. 

In our study, we investigated four different software systems, 

i.e., Office, Exchange, Office365 and Windows, and conclude 

that we could observe that ownership metrics correlated with 

defects, and that we even could use such metrics to build 

performant bug prediction models. 

In this replication study, we also changed the granularity 

level of a software component from a binary level to source file 

and directory level. In contrast to the results of Foucault et al. [2] 

we could see correlations between ownership metrics on source 

file and directory level (see RQ2). Similar to their findings, did 

the more coarse-grain directory level metrics perform better than 

the metrics defined on file level. On the other hand, as our data 

revealed most of the directories only contain a very small 

number of files (an average median of 3 files). It is important to 

remember that many studies showed that defects tend to 

correlate with size. Therefore, we were particular careful to 

normalize our metrics with respect to the size of a directory. 

 Our observed correlation values on file level are on average 

0.39 and 0.57 on directory level. The authors in [2] hypothesize 

that only a correlation value above 0.5 indicates a strong 

correlation. The interpretation of correlation values is much 

more complex than that and depends also on the sample size and 

the significance of the observation. Our sample size was very 

large on file as well as on directory level, and all spearman 

correlation showed a very low p value (below 0.01), indicating 

that the correlations we see are very unlikely to occur due to 

TABLE VII.  METRIC IMPORTANCE FOR PREDICTION MODELS BASED ON 

OWNERSHIP METRICS CLASSIFYING DEFECTIVE SOURCE DIRECTORIES. 

metrics Win OF16 OF15 Ex13 Ex15 O365 

avgcontributor .57 .61 .39 .40 .41 .67 
avgownership .80 .77 .75 .79 .73 .87 
ownershipdir .77 .79 .77 .79 .74 .86 
minownerdir .84 .81 .78 .82 .78 .88 

avgminors .79 .73 .73 .77 .70 .86 
avgminimals .30 .37 .37 .72 .36 .77 

pcminors .82 .79 .77 .80 .74 .87 
pcminimal .78 .27 .30 .78 .28 .83 
pcmajors .82 .79 .77 .80 .74 .87 

minownedfile .81 .78 .75 .79 .73 .87 
weakowned .73 .35 .37 .70 .38 .75 
manager3dir .68 .42 .52 .67 .40 .73 
manager4dir .63 .60 .63 .69 .58 .74 
manager5dir .71 .62 .65 .69 .63 .75 

       
 



chance. Judging the effect size based on Cohen’s terms [12], we 

saw medium to strong effects for the correlation observed even 

on file level. From that perspective, we conclude that we could 

observe significant correlations between defects and ownership 

metrics for all products, and for both granularity levels. In 

addition, we could observe rather good performances in terms of 

predicting defective source code files and directories (RQ3). 

During the interviews and interaction with the product teams, 

we identified several reasons for a lack of ownership, namely 

transfer of ownership, bug fixing, refactoring, and architectural 

issues or smells (RQ4). In addition, we observed three groups of 

ownership: first, the individual ownership, where one engineer 

is mainly performing changes to and responsible for a code 

artifact; second collective ownership, where a group of people 

all together are changing and are responsible and for code 

artifacts; and finally non-ownership where a lack of 

accountability and responsibility is observable.  

Even though beyond the scope of this paper, we think 

organizational metrics for example reflecting the number of 

managers involved can help to separate files that are not owned 

from files that are collectively owned. We saw that the number 

of level 3 managers for collective owned files is significantly 

higher than for files that are not owned. We think further 

investigation of this phenomena and refinement of the 

organizational metrics is needed. 

B. Recommendations. 

In this section, we summarize the lessons learned during this 

study by formulating several recommendations targeted at 

development teams. 

1. Do not enforce a strong ownership model without 

understanding the impact. 

In this study, we showed that weak ownership has an impact 

on code quality. On the other hand, from the interviews we 

understand that weak ownership is not always unintended. 

Simply enforcing a very strong ownership model might not be 

the right solution, as ownership not only has implications on 

responsibility and accountability, but also on knowledge and 

dependencies. For example, if several engineers edit one file, it 

might be problematic because accountability can be unclear. On 

the other hand, strong ownership prohibits knowledge transfer. 

Not being familiar with a certain piece of code is a serious 

problems and building a mental model about software a tedious 

task [11]. Also in [13] Mockus showed that it is hard for 

developers to understand the code of others, and that “developers 

go to great lengths to create and maintain rich mental models of 

code that are rarely permanently recorded.” This directly 

impacts the ability of a developer to contribute to source code 

that she has not contributed before.  

2. Review weakly owned files and directories to 

understand the mechanisms and dynamics at play (i.e., 

collaborative ownership or non-ownership). 

An interesting differentiation of type of ownership is done 

by Martin Nordberg [14]. He makes clear that there is a 

difference between “collaborative” ownership and “non-

ownership”. He defines collaborative ownership, as an 

ownership where code is collectively owned, but responsibilities 

and schedules are clear. Each team member can work across 

subsystems as needed. If implemented right, this style helps to 

build and maintain knowledge about the code among team 

members and one might expect the quality of such systems to be 

high. On the other hand, he describes non-ownership as a mode 

in which several developers make changes to the same system 

but with minimal accountability for quality or team 

communication. In such systems, one might expect the quality 

to be low. During the interviews, engineers explained a similar 

kind of differentiation between one group of weakly owned files 

and directories and the other. Engineers seem more worried 

about the unintended or unknown weakly owned artifacts which 

seem to correspond to the non-ownership category, and 

expressed the need to further investigate.  

3. As much as possible assign an owner to currently 

weakly owned files and directories with unclear 

accountability.  

We recommend that teams pay attention to ownership of files 

and directories, and especially to those artifacts that are not 

intentionally weakly owed, and where the reason for a lack of 

ownership is unclear. Assigning an owner might not imply that 

this is the only person that is allowed to change the artifact, but 

that this person is aware of changes to the artifact for example 

via code reviewing practices. If the reason for the weak 

ownership are architectural smell (i.e., cross cutting concerns, 

god classes etc.) the team should consider refactoring to split 

weakly owned files into more coherent units. 

4. If driving changes to the ownership model is not 

possible or desired, use ownership information as 

indicator of risk.  

For artifacts, where strong ownership is practically not possible 

to ensure or not desired we highly recommend that changes to 

such weakly owned files and directories are carefully reviewed. 

Also, we recommend to use ownership information to drive test 

efforts. 

C. Importance of Replication Studies. 

Especially in software engineering, replication studies are 

limited available and published. Yet, they are crucial to ensure 

progress in scientific community. Generalizability is often one 

of the main threats to validity of research studies. As Foucault et 

al. [2] show in their replication study, the ownership measures 

do not correlate with all systems under study. On the other hand, 

we could clearly show that the results generalize beyond the 

Windows as a subject system. 

D. Threats to Validity 

Like other empirical studies, ours too has threats to validity.  

Not all files touched in bug fixing commit must be 

necessarily related to the actual fix. Engineers may entangle 

multiple atomic changes into bigger blobs mixing code changes 

of different nature, such as fixed and refactorings. Tangled 

changes may lead to data noise and bias [15, 16].  



Using CodeMine [8] as data mining tool to create our data 

sets, we naturally inherit all threats to validity of CodeMine, this 

implies likely noise with respect to mapping bug reports to code 

changes and associations between developers and organizational 

structure. On the other hand, CodeMine is widely used by 

practitioners and researchers within Microsoft and data quality 

is constantly monitored and improved. 

In this study, we investigated products using development 

processes that may contain Microsoft specific elements. The set 

of products includes products using different processes and 

having different product objectives. However, all investigated 

products are Microsoft products. We do not claim our results to 

be general, supported by the contradicting results reported in [2]. 

Instead of using one product and relying on one evaluation 

method (i.e., statistical or interviews) we used triangulation and 

used four different products and two complementary evaluation 

techniques to reduces the potential systematic bias that can occur 

with using only one data source, method, or procedure [17].  

VII. RELATED WORK  

A. Ownership and Organizational Structure 

This paper builds upon work of Bird et al. [1] who discuss 

the impact ownership on software defects of major software 

products, i.e., Windows Vista and Windows 7. In their study, 

especially the effect of changes coming from low expertise 

developers is examined, and reasons for their contributions are 

revealed. The authors show that the removal of low-expertise 

contributions can increase the quality of the software system. 

Foucault et al. [2] replicated the original study on open source 

software systems (FLOSS), and found that the findings do not 

generalize to their open source software under study. In 

particular, the authors could only find strong correlation between 

ownership metrics and faults for half of the systems. The authors 

further investigated this phenomena and come to the conclusion 

that this is due to the nature of how contributions are distributed 

in FLOSS projects and also due to the presents of very strong 

contributors (so called “heroes”).   

In [18] Posnett et al. reflect on the composition of software 

systems, and question whether and how the granularity level of 

software components chosen for investigation impact the 

outcome of the study results. This concern is truly a valid one, 

and a key motivator for us to replicate previous studies on 

ownership on different granularity levels.  

Rahman and Devanbu [6] examined the effects of ownership 

on an even more fine-granular level, the level of contributions to 

code fragments. The study however uses different ownership 

measures and focuses purely on open source software systems.  

Weyuker et al. [19] focused on the effects the number of 

contributors have on defect prediction models. The authors 

found only moderate improvements of fault prediction models 

that included the cumulative number of developers as prediction 

factor. Whereby we also use the number of contributors as one 

factor, we consider a much broader set of ownership metrics. 

Also, our focus is not to provide a defect prediction model per 

se, but to show that ownership metrics not only correlate but also 

can be used to classify defective artifacts.  

Meneely et al. [7] studied the effects of the number of 

contributors on security vulnerabilities focusing on the Linux 

software system. In contrast to Weyuker et al. [19], the authors 

showed that a higher number of developers significantly 

increases the risk of the file to yield a security vulnerability. Files 

changed by more than 9 developers showed a 16 times higher 

risk to comprise a security defect.  

Herzig and Nagappan [5] examined the impact of 

organizational structure on test reliability and test effectiveness. 

In contrast to this study, their study focused on owners of test 

cases instead of production code and developers.  

B. Predicting and Classifying Defect Prone Artifacts 

The number of related studies on defect prediction models is 

large. For the sake of brevity, we only refer to the most relevant 

related studies in this section. The first studies on predicting 

defects using code metrics emerged in the 1990s. In 1999, 

Fenton and Neil [20] provided a comprehensive overview of 

defect prediction models at that time. In recent years, more 

reviews on defect prediction models are emerging, e.g. [21, 22]. 

These reviews show the wide variety of aspects and 

measurements used for defect prediction purposes. Ostrand et al. 

[23] used code metrics and prior faults to predict the number of 

faults. Other studies used change-related metrics [24, 25], 

developer related metrics [26], organizational metrics [4], 

process metrics [27], change dependency metrics [28, 29], or test 

metrics [30, 31] to build defect prediction models, on various 

software systems and levels of granularity. As previously 

mentioned, our study does not focus on building a prediction 

model per se, but focuses on showing a relationship between 

ownership metrics and code defects. 

VIII. CONCLUSIONS 

In this paper, we replicated and enhanced a study of Bird et 

al. that looked at the effects ownership has on code quality by 

measuring the presents of defects. In this study, we extended the 

previous metrics to be usable on a source file and directory level, 

thus leading to much more actionable insights. We could show 

that low ownership metrics correlate with the number of bugs 

that are fixed either on file, or on directory level. Further, we 

showed that we can build quite reliable prediction models that 

can classify files and directories in defective and non-defective 

entities with an average recall of 0.60 and an average precision 

of 0.76 for directory level.  

As future work, we will use action research to investigate the 

actions implemented by product teams as a result of this study 

and also to understand the effects caused by changes to the 

current ownership model. We plan to do that again by using a 

combination of data-driven analytics, and close collaboration 

with product teams.   
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