
Code Reviews Do Not Find Bugs
How the Current Code Review Best Practice Slows Us Down

Jacek Czerwonka, Michaela Greiler, Jack Tilford

Microsoft Corporation

Redmond, WA 98075

{ jacekcz, mgreiler, jtilford }@microsoft.com

Abstract—Because of its many uses and benefits, code

reviews are a standard part of the modern software

engineering workflow. Since they require involvement of

people, code reviewing is often the longest part of the code

integration activities. Using experience gained at Microsoft

and with support of data, we posit (1) that code reviews

often do not find functionality issues that should block a

code submission; (2) that effective code reviews should be

performed by people with specific set of skills; and (3) that

the social aspect of code reviews cannot be ignored. We find

that we need to be more sophisticated with our guidelines

for the code review workflow. We show how our findings

from code reviewing practice influence our code review

tools at Microsoft. Finally, we assert that, due to its costs,

code reviewing practice is a topic deserving to be better

understood, systematized and applied to software

engineering workflow with more precision than the best

practice currently prescribes.

Index Terms—Software engineering workflow, code

reviews, code integration

I. INTRODUCTION

In software engineering, we use code reviews for several

reasons. Among them: to find defects, to ensure code’s long-

term maintainability, as a knowledge sharing tool, and to

broadcast ongoing progress [3]. Additionally, in open-source, a

flavor of a code review known as a pull request is used to agree

on whether a code change is worthy of inclusion in the mainline

source.

These are different purposes but the common thread is that

code reviews allow a group of people to communicate over a

shared view of an artefact undergoing a change. Because of

their many uses and benefits, code reviews are a standard part

of the modern software engineering workflow. Since they

require heavy involvement of people, code reviewing is often

the lengthiest part of code integration. The confluence of many

goals in one activity does not make it easy to understand where

code reviews are most beneficial and how to best inject them

into the overall engineering workflow so that the time spent

waiting for the opinions of others is always justified.

Keeping the above tension in mind, we ask: Do we currently

use code reviews in the most efficient way or is it merely

adequate? In what situations, do code reviews provide more

value than others? What is the value of consistency of applying

code reviews equally to all code changes?

II. DISCUSSION

Modern code reviewing traces back its roots to the process

of inspection [1]. Inspections were originally conceived as

formal meetings, to which participants would prepare ahead of

time. Unlike inspections, code reviews do not require

participants to be in the same place nor do they happen at a

fixed, prearranged time. Aligning with a distributed nature of

many projects, code reviews are asynchronous and frequently

supporting geographically distributed reviewers. Code review

tools are now built with these characteristics in mind and are

well-integrated in the modern engineering workflows.

With abundance of data coming from the engineering

systems and having a diverse set of projects to observe [4], we

have an opportunity to better understand the costs and benefits

of the code review process.

Contrary to the often stated primary goal of code reviews,

they often do not find functionality defects that should block a

code submission. Only about 15% of comments provided by

reviewers indicate a possible defect, much less a blocking

defect. Rather, it is feedback related to the long-term code

maintainability that comprises a much larger portion of

comments provided by reviewers; at least 50% of all.

Code reviews take deliberation and are performed by people

with a specific set of skills. The social aspect of code reviews

cannot be ignored: people's roles on the team and their standing

in team's hierarchy influence the outcome. Often it is not only

the author of the change but also the reviewers who find

themselves under scrutiny.

The usefulness of code review comments—as judged by the

author of a code change—is positively correlated with

reviewers’ experience. Without prior exposure to the part of

code base being reviewed, on average only 33% of any

reviewer’s comments are deemed useful by the author of a

change. However, reviewers typically learn very fast. When

reviewing the same part of code base for the third time, the

usefulness ratio increases to about 67% of their comments. By

the fourth time, it is equivalent to the project’s long-term

average.

Code review usefulness is negatively correlated with the size

of a code review. That is, the more files there are in a single

review, the lower the overall rate of useful feedback. The

decrease however only starts to be noticeable for reviews with

20 or more changed files.

Modern code review process is expensive. Developers spend

on average six hours a week reviewing changes of others [6].

Not only is it a significant effort in terms of time spent but also

it forces the reviewer to switch context away from their current

work.

The median time from a review being requested to receiving

all necessary sign-offs is about 24 hours, with many lasting

days if not weeks [5]. A long time in review causes process

stalls and affects anyone who might be waiting to take a

dependency on the new code. In addition, the longer the review

time, the harder is for the author to switch back to the change

and incorporate the feedback of the reviewers without

potentially introducing new defects.

III. CONCLUSIONS

The above examples provide a view into the code review

process and demonstrate our attempts to further understand it.

The high cost of code reviews and reviewing having benefits

that may not match the assumptions, often lead us to using them

in our workflows in ways that are not efficient. We need to be

more sophisticated with our guidelines surrounding the code

review workflow. Our findings from code reviewing practice

“in the very large” and studies conducted in collaboration with

Microsoft Research, influence code review tools at Microsoft.

Due to its cost and importance, this is a topic deserving to be

better understood, systematized and applied to software with

more precision than the best practice and research currently

prescribes.

With this talk, the attendees from industry receive a detailed

experience report on benefits and costs of reviewing practices

and an overview of supporting tools used at Microsoft.

Attendees from academia get an overview of how research

findings and data-driven software engineering techniques

shape the tooling and practices landscape in industry, as well as

which open issues remain unanswered.

IV. SPEAKER

Jacek Czerwonka is a software engineering manager on the

Tools for Software Engineers team at Microsoft. His work

focuses on creating systems increasing code development

velocity and tools for software verification. His team, which

includes the co-authors, works on understanding of software

engineering organizations and improving engineering

processes at Microsoft. His interests revolve around data-driven

decision making on software projects, engineering process

measurement, process improvement, software testing and

quality assurance.

REFERENCES

[1] Lawrence G. Votta, Jr.. 1993. Does every inspection

need a meeting?. SIGSOFT Softw. Eng. Notes 18, 5

(December 1993), 107-114.

[2] Mika V. Mantyla and Casper Lassenius. 2009. What

Types of Defects Are Really Discovered in Code

Reviews?. IEEE Trans. Software Eng. 35, 3 (May

2009), 430-448

[3] Alberto Bacchelli and Christian Bird. 2013.

Expectations, outcomes, and challenges of modern

code review. In Proceedings of the 2013 International

Conference on Software Engineering (ICSE '13).

IEEE Press, Piscataway, NJ, USA, 712-721.

[4] Jacek Czerwonka, Nachiappan Nagappan, Wolfram

Schulte, and Brendan Murphy. 2013. CODEMINE:

Building a Software Development Data Analytics

Platform at Microsoft. IEEE Software 30, 4 (July

2013), 64-71.

[5] Peter C. Rigby and Christian Bird. 2013. Convergent

contemporary software peer review practices. In

Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering (ESEC/FSE

2013). ACM, New York, NY, USA, 202-212.

[6] Amiangshu Bosu and Jeffrey Carver. 2013. Impact of

Peer Code Review on Peer Impression Formation: A

Survey. Proceedings of the 7th ACM/IEEE

International Symposium on Empirical Software

Engineering and Measurement (ESEM), 2013.

Baltimore, MD, USA, 133-142.

